Bab 1. Pendahuluan
Daftar Isi
Sistem Operasi
Struktur Komputer
Struktur Sistem Operasi
Rangkuman
Pertanyaan
Rujukan
Bab ini berisi tiga pokok pembahasan. Pertama, membahas hal-hal umum seputar sistem operasi. Selanjutnya, menerangkan konsep perangkat keras sebuah komputer. Sebagai penutup akan diungkapkan, pokok konsep dari sebuah sistem operasi.
Sistem Operasi
Sistem operasi merupakan sebuah penghubung antara pengguna dari komputer dengan perangkat keras komputer. Sebelum ada sistem operasi, orang hanya mengunakan komputer dengan menggunakan sinyal analog dan sinyal digital. Seiring dengan berkembangnya pengetahuan dan teknologi, pada saat ini terdapat berbagai sistem operasi dengan keunggulan masing-masing. Untuk lebih memahami sistem operasi maka sebaiknya perlu diketahui terlebih dahulu beberapa konsep dasar mengenai sistem operasi itu sendiri.
Pengertian sistem operasi secara umum ialah pengelola seluruh sumber-daya yang terdapat pada sistem komputer dan menyediakan sekumpulan layanan (system calls) ke pemakai sehingga memudahkan dan menyamankan penggunaan serta pemanfaatan sumber-daya sistem komputer.
Fungsi Dasar
Sistem komputer pada dasarnya terdiri dari empat komponen utama, yaitu perangkat-keras, program aplikasi, sistem-operasi, dan para pengguna. Sistem operasi berfungsi untuk mengatur dan mengawasi penggunaan perangkat keras oleh berbagai program aplikasi serta para pengguna.
Sistem operasi berfungsi ibarat pemerintah dalam suatu negara, dalam arti membuat kondisi komputer agar dapat menjalankan program secara benar. Untuk menghindari konflik yang terjadi pada saat pengguna menggunakan sumber-daya yang sama, sistem operasi mengatur pengguna mana yang dapat mengakses suatu sumber-daya. Sistem operasi juga sering disebut resource allocator. Satu lagi fungsi penting sistem operasi ialah sebagai program pengendali yang bertujuan untuk menghindari kekeliruan (error) dan penggunaan komputer yang tidak perlu.
Tujuan Mempelajari Sistem Operasi
Tujuan mempelajari sistem operasi agar dapat merancang sendiri serta dapat memodifikasi sistem yang telah ada sesuai dengan kebutuhan kita, agar dapat memilih alternatif sistem operasi, memaksimalkan penggunaan sistem operasi dan agar konsep dan teknik sistem operasi dapat diterapkan pada aplikasi-aplikasi lain.
Sasaran Sistem Operasi
Sistem operasi mempunyai tiga sasaran utama yaitu kenyamanan -- membuat penggunaan komputer menjadi lebih nyaman, efisien -- penggunaan sumber-daya sistem komputer secara efisien, serta mampu berevolusi -- sistem operasi harus dibangun sehingga memungkinkan dan memudahkan pengembangan, pengujian serta pengajuan sistem-sistem yang baru.
Sejarah Sistem Operasi
Menurut Tanenbaum, sistem operasi mengalami perkembangan yang sangat pesat, yang dapat dibagi kedalam empat generasi:
Generasi Pertama (1945-1955)
Generasi pertama merupakan awal perkembangan sistem komputasi elektronik sebagai pengganti sistem komputasi mekanik, hal itu disebabkan kecepatan manusia untuk menghitung terbatas dan manusia sangat mudah untuk membuat kecerobohan, kekeliruan bahkan kesalahan. Pada generasi ini belum ada sistem operasi, maka sistem komputer diberi instruksi yang harus dikerjakan secara langsung.
Generasi Kedua (1955-1965)
Generasi kedua memperkenalkan Batch Processing System, yaitu Job yang dikerjakan dalam satu rangkaian, lalu dieksekusi secara berurutan.Pada generasi ini sistem komputer belum dilengkapi sistem operasi, tetapi beberapa fungsi sistem operasi telah ada, contohnya fungsi sistem operasi ialah FMS dan IBSYS.
Generasi Ketiga (1965-1980)
Pada generasi ini perkembangan sistem operasi dikembangkan untuk melayani banyak pemakai sekaligus, dimana para pemakai interaktif berkomunikasi lewat terminal secara on-line ke komputer, maka sistem operasi menjadi multi-user (di gunakan banyak pengguna sekali gus) dan multi-programming (melayani banyak program sekali gus).
Generasi Keempat (Pasca 1980an)
Dewasa ini, sistem operasi dipergunakan untuk jaringan komputer dimana pemakai menyadari keberadaan komputer-komputer yang saling terhubung satu sama lainnya. Pada masa ini para pengguna juga telah dinyamankan dengan Graphical User Interface yaitu antar-muka komputer yang berbasis grafis yang sangat nyaman, pada masa ini juga dimulai era komputasi tersebar dimana komputasi-komputasi tidak lagi berpusat di satu titik, tetapi dipecah dibanyak komputer sehingga tercapai kinerja yang lebih baik.
Layanan Sistem Operasi
Sebuah sistem operasi yang baik menurut Tanenbaum harus memiliki layanan sebagai berikut: pembuatan program, eksekusi program, pengaksesan I/O Device, pengaksesan terkendali terhadap berkas pengaksesan sistem, deteksi dan pemberian tanggapan pada kesalahan, serta akunting.
Pembuatan program yaitu sistem operasi menyediakan fasilitas dan layanan untuk membantu para pemrogram untuk menulis program; Eksekusi Program yang berarti Instruksi-instruksi dan data-data harus dimuat ke memori utama, perangkat-parangkat masukan/ keluaran dan berkas harus di-inisialisasi, serta sumber-daya yang ada harus disiapkan, semua itu harus di tangani oleh sistem operasi; Pengaksesan I/O Device, artinya Sistem Operasi harus mengambil alih sejumlah instruksi yang rumit dan sinyal kendali menjengkelkan agar pemrogram dapat berfikir sederhana dan perangkat pun dapat beroperasi; Pengaksesan terkendali terhadap berkas yang artinya disediakannya mekanisme proteksi terhadap berkas untuk mengendalikan pengaksesan terhadap berkas; Pengaksesan sistem artinya pada pengaksesan digunakan bersama (shared system); Fungsi pengaksesan harus menyediakan proteksi terhadap sejumlah sumber-daya dan data dari pemakai tak terdistorsi serta menyelesaikan konflik-konflik dalam perebutan sumber-daya; Deteksi dan Pemberian tanggapan pada kesalahan, yaitu jika muncul permasalahan muncul pada sistem komputer maka sistem operasi harus memberikan tanggapan yang menjelaskan kesalahan yang terjadi serta dampaknya terhadap aplikasi yang sedang berjalan; dan Akunting yang artinya Sistem Operasi yang bagus mengumpulkan data statistik penggunaan beragam sumber-daya dan memonitor parameter kinerja.
Struktur Komputer
Struktur sebuah sistem komputer dapat dibagi menjadi:
Sistem Operasi Komputer.
Struktur I/O.
Struktur Penyimpanan.
Storage Hierarchy.
Proteksi Perangkat Keras.
Sistem Operasi Komputer
Dewasa ini sistem komputer multiguna terdiri dari CPU (Central Processing Unit); serta sejumlah device controller yang dihubungkan melalui bus yang menyediakan akses ke memori. Setiap device controller bertugas mengatur perangkat yang tertentu (contohnya disk drive, audio device, dan video display). CPU dan device controller dapat dijalankan secara bersamaan, namun demikian diperlukan mekanisme sinkronisasi untuk mengatur akses ke memori.
Pada saat pertama kali dijalankan atau pada saat boot, terdapat sebuah program awal yang mesti dijalankan. Program awal ini disebut program bootstrap. Program ini berisi semua aspek dari sistem komputer, mulai dari register CPU, device controller, sampai isi memori.
Interupsi merupakan bagian penting dari sistem arsitektur komputer. Setiap sistem komputer memiliki mekanisme yang berbeda. Interupsi bisa terjadi apabila perangkat keras (hardware) atau perangkat lunak (software) minta "dilayani" oleh prosesor. Apabila terjadi interupsi maka prosesor menghentikan proses yang sedang dikerjakannya, kemudian beralih mengerjakan service routine untuk melayani interupsi tersebut. Setelah selesai mengerjakan service routine maka prosesor kembali melanjutkan proses yang tertunda.
Struktur I/O
Bagian ini akan membahas struktur I/O, interupsi I/O, dan DMA, serta perbedaan dalam penanganan interupsi.
Interupsi I/O
Untuk memulai operasi I/O, CPU me-load register yang bersesuaian ke device controller. Sebaliknya device controller memeriksa isi register untuk kemudian menentukan operasi apa yang harus dilakukan. Pada saat operasi I/O dijalankan ada dua kemungkinan, yaitu synchronous I/O dan asynchronous I/O. Pada synchronous I/O, kendali dikembalikan ke proses pengguna setelah proses I/O selesai dikerjakan. Sedangkan pada asynchronous I/O, kendali dikembalikan ke proses pengguna tanpa menunggu proses I/O selesai. Sehingga proses I/O dan proses pengguna dapat dijalankan secara bersamaan.
Struktur DMA
Direct Memory Access (DMA) suatu metoda penanganan I/O dimana device controller langsung berhubungan dengan memori tanpa campur tangan CPU. Setelah men-set buffers, pointers, dan counters untuk perangkat I/O, device controller mentransfer blok data langsung ke penyimpanan tanpa campur tangan CPU. DMA digunakan untuk perangkat I/O dengan kecepatan tinggi. Hanya terdapat satu interupsi setiap blok, berbeda dengan perangkat yang mempunyai kecepatan rendah dimana interupsi terjadi untuk setiap byte (word).
Struktur Penyimpanan
Program komputer harus berada di memori utama (biasanya RAM) untuk dapat dijalankan. Memori utama adalah satu-satunya tempat penyimpanan yang dapat diakses secara langsung oleh prosesor. Idealnya program dan data secara keseluruhan dapat disimpan dalam memori utama secara permanen. Namun demikian hal ini tidak mungkin karena:
Ukuran memori utama relatif kecil untuk dapat menyimpan data dan program secara keseluruhan.
Memori utama bersifat volatile, tidak bisa menyimpan secara permanen, apabila komputer dimatikan maka data yang tersimpan di memori utama akan hilang.
Memori Utama
Hanya memori utama dan register merupakan tempat penyimpanan yang dapat diakses secara langsung oleh prosesor. Oleh karena itu instruksi dan data yang akan dieksekusi harus disimpan di memori utama atau register.
Untuk mempermudah akses perangkat I/O ke memori, pada arsitektur komputer menyediakan fasilitas pemetaan memori ke I/O. Dalam hal ini sejumlah alamat di memori dipetakan dengan device register. Membaca dan menulis pada alamat memori ini menyebabkan data ditransfer dari dan ke device register. Metode ini cocok untuk perangkat dengan waktu respon yang cepat seperti video controller.
Register yang terdapat dalam prosesor dapat diakses dalam waktu 1 clock cycle. Hal ini menyebabkan register merupakan media penyimpanan dengan akses paling cepat bandingkan dengan memori utama yang membutuhkan waktu relatif lama. Untuk mengatasi perbedaan kecepatan, dibuatlah suatu penyangga (buffer) penyimpanan yang disebut cache.
Magnetic Disk
Magnetic Disk berperan sebagai secondary storage pada sistem komputer modern. Magnetic Disk disusun dari piringan-piringan seperti CD. Kedua permukaan piringan diselimuti oleh bahan-bahan magnetik. Permukaan dari piringan dibagi-bagi menjadi track yang memutar, yang kemudian dibagi lagi menjadi beberapa sektor.
Storage Hierarchy
Dalam storage hierarchy structure, data yang sama bisa tampil dalam level berbeda dari sistem penyimpanan. Sebagai contoh integer A berlokasi pada bekas B yang ditambahkan 1, dengan asumsi bekas B terletak pada magnetic disk. Operasi penambahan diproses dengan pertama kali mengeluarkan operasi I/O untuk menduplikat disk block pada A yang terletak pada memori utama Operasi ini diikuti dengan kemungkinan penduplikatan A ke dalam cache dan penduplikatan A ke dalam internal register. Sehingga penduplikatan A terjadi di beberapa tempat. Pertama terjadi di internal register dimana nilai A berbeda dengan yang di sistem penyimpanan. Dan nilai di A akan kembali sama ketika nilai baru ditulis ulang ke magnetic disk.
Pada kondisi multi prosesor, situasi akan menjadi lebih rumit. Hal ini disebabkan masing-masing prosesor mempunyai local cache. Dalam kondisi seperti ini hasil duplikat dari A mungkin hanya ada di beberapa cache. Karena CPU (register-register) dapat dijalankan secara bersamaan maka kita harus memastikan perubahan nilai A pada satu cache akan mengubah nilai A pada semua cache yang ada. Hal ini disebut sebagai Cache Coherency.
Proteksi Perangkat Keras
Sistem komputer terdahulu berjenis programmer-operated systems. Ketika komputer dioperasikan dalam konsul mereka (pengguna) harus melengkapi sistem terlebih dahulu. Akan tetapi setelah sistem operasi lahir maka hal tersebut diambil alih oleh sistem operasi. Sebagai contoh pada monitor yang proses I/O sudah diambil alih oleh sistem operasi, padahal dahulu hal ini dilakukan oleh pengguna.
Untuk meningkatkan utilisasi sistem, sistem operasi akan membagi sistem sumber daya sepanjang program secara simultan. Pengertian spooling adalah suatu program dapat dikerjakan walau pun I/O masih mengerjakan proses lainnya dan disk secara bersamaan menggunakan data untuk banyak proses. Pengertian multi programming adalah kegiatan menjalankan beberapa program pada memori pada satu waktu.
Pembagian ini memang menguntungkan sebab banyak proses dapat berjalan pada satu waktu akan tetapi mengakibatkan masalah-masalah baru. Ketika tidak di sharing maka jika terjadi kesalahan hanyalah akan membuat kesalahan program. Tapi jika di-sharing jika terjadi kesalahan pada satu proses/ program akan berpengaruh pada proses lainnya.
Sehingga diperlukan pelindung (proteksi). Tanpa proteksi jika terjadi kesalahan maka hanya satu saja program yang dapat dijalankan atau seluruh output pasti diragukan.
Banyak kesalahan pemprograman dideteksi oleh perangkat keras. Kesalahan ini biasanya ditangani oleh sistem operasi. Jika terjadi kesalahan program, perangkat keras akan meneruskan kepada sistem operasi dan sistem operasi akan menginterupsi dan mengakhirinya. Pesan kesalahan disampaikan, dan memori dari program akan dibuang. Tapi memori yang terbuang biasanya tersimpan pada disk agar programmer bisa membetulkan kesalahan dan menjalankan program ulang.
Operasi Dual Mode
Untuk memastikan operasi berjalan baik kita harus melindungi sistem operasi, program, dan data dari program-program yang salah. Proteksi ini memerlukan share resources. Hal ini bisa dilakukan sistem operasi dengan cara menyediakan pendukung perangkat keras yang mengizinkan kita membedakan mode pengeksekusian program.
Mode yang kita butuhkan ada dua mode operasi yaitu:
Mode Monitor.
Mode Pengguna.
Pada perangkat keras akan ada bit atau Bit Mode yang berguna untuk membedakan mode apa yang sedang digunakan dan apa yang sedang dikerjakan. Jika Mode Monitor maka akan benilai 0, dan jika Mode Pengguna maka akan bernilai 1.
Pada saat boot time, perangkat keras bekerja pada mode monitor dan setelah sistem operasi di-load maka akan mulai masuk ke mode pengguna. Ketika terjadi trap atau interupsi, perangkat keras akan men-switch lagi keadaan dari mode pengguna menjadi mode monitor (terjadi perubahan state menjadi bit 0). Dan akan kembali menjadi mode pengguna jikalau sistem operasi mengambil alih proses dan kontrol komputer (state akan berubah menjadi bit 1).
Proteksi I/O
Pengguna bisa mengacaukan sistem operasi dengan melakukan instruksi I/O ilegal dengan mengakses lokasi memori untuk sistem operasi atau dengan cara hendak melepaskan diri dari prosesor. Untuk mencegahnya kita menganggap semua instruksi I/O sebagai privilidge instruction sehingga mereka tidak bisa mengerjakan instruksi I/O secara langsung ke memori tapi harus lewat sistem operasi terlebih dahulu. Proteksi I/O dikatakan selesai jika pengguna dapat dipastikan tidak akan menyentuh mode monitor. Jika hal ini terjadi proteksi I/O dapat dikompromikan.
Proteksi Memori
Salah satu proteksi perangkat keras ialah dengan proteksi memori yaitu dengan pembatasan penggunaan memori. Disini diperlukan beberapa istilah yaitu:
Base Register yaitu alamat memori fisik awal yang dialokasikan/ boleh digunakan oleh pengguna.
Limit Register yaitu nilai batas dari alamat memori fisik awal yang dialokasikan/boleh digunakan oleh pengguna.
Proteksi Perangkat Keras.
Sebagai contoh sebuah pengguna dibatasi mempunyai base register 300040 dan mempunyai limit register 120900 maka pengguna hanya diperbolehkan menggunakan alamat memori fisik antara 300040 hingga 420940 saja.
Struktur Sistem Operasi
Komponen-komponen Sistem
Pada kenyataannya tidak semua sistem operasi mempunyai struktur yang sama. Namun menurut Avi Silberschatz, Peter Galvin, dan Greg Gagne, umumnya sebuah sistem operasi modern mempunyai komponen sebagai berikut:
Managemen Proses.
Managemen Memori Utama.
Managemen Secondary-Storage.
Managemen Sistem I/O.
Managemen Berkas.
Sistem Proteksi.
Jaringan.
Command-Interpreter system.
Managemen Proses
Proses adalah keadaan ketika sebuah program sedang di eksekusi. Sebuah proses membutuhkan beberapa sumber daya untuk menyelesaikan tugasnya. sumber daya tersebut dapat berupa CPU time, memori, berkas-berkas, dan perangkat-perangkat I/O.
Sistem operasi bertanggung jawab atas aktivitas-aktivitas yang berkaitan dengan managemen proses seperti:
Pembuatan dan penghapusan proses pengguna dan sistem proses.
Menunda atau melanjutkan proses.
Menyediakan mekanisme untuk proses sinkronisasi.
Menyediakan mekanisme untuk proses komunikasi.
Menyediakan mekanisme untuk penanganan deadlock.
Managemen Memori Utama
Memori utama atau lebih dikenal sebagai memori adalah sebuah array yang besar dari word atau byte, yang ukurannya mencapai ratusan, ribuan, atau bahkan jutaan. Setiap word atau byte mempunyai alamat tersendiri. Memori Utama berfungsi sebagai tempat penyimpanan yang akses datanya digunakan oleh CPU atau perangkat I/O. Memori utama termasuk tempat penyimpanan data yang sementara (volatile), artinya data dapat hilang begitu sistem dimatikan.
Sistem operasi bertanggung jawab atas aktivitas-aktivitas yang berkaitan dengan managemen memori seperti:
Menjaga track dari memori yang sedang digunakan dan siapa yang menggunakannya.
Memilih program yang akan di-load ke memori.
Mengalokasikan dan meng-dealokasikan ruang memori sesuai kebutuhan.
Managemen Secondary-Storage
Data yang disimpan dalam memori utama bersifat sementara dan jumlahnya sangat kecil. Oleh karena itu, untuk meyimpan keseluruhan data dan program komputer dibutuhkan secondary-storage yang bersifat permanen dan mampu menampung banyak data. Contoh dari secondary-storage adalah harddisk, disket, dll.
Sistem operasi bertanggung-jawab atas aktivitas-aktivitas yang berkaitan dengan disk-management seperti: free-space management, alokasi penyimpanan, penjadualan disk.
Managemen Sistem I/O
Sering disebut device manager. Menyediakan "device driver" yang umum sehingga operasi I/O dapat seragam (membuka, membaca, menulis, menutup). Contoh: pengguna menggunakan operasi yang sama untuk membaca berkas pada hard-disk, CD-ROM dan floppy disk.
Komponen Sistem Operasi untuk sistem I/O:
Buffer: menampung sementara data dari/ ke perangkat I/O.
Spooling: melakukan penjadualan pemakaian I/O sistem supaya lebih efisien (antrian dsb.).
Menyediakan driver untuk dapat melakukan operasi "rinci" untuk perangkat keras I/O tertentu.
Managemen Berkas
Berkas adalah kumpulan informasi yang berhubungan sesuai dengan tujuan pembuat berkas tersebut. Berkas dapat mempunyai struktur yang bersifat hirarkis (direktori, volume, dll.). Sistem operasi bertanggung-jawab:
Pembuatan dan penghapusan berkas.
Pembuatan dan penghapusan direktori.
Mendukung manipulasi berkas dan direktori.
Memetakan berkas ke secondary storage.
Mem-backup berkas ke media penyimpanan yang permanen (non-volatile).
Sistem Proteksi
Proteksi mengacu pada mekanisme untuk mengontrol akses yang dilakukan oleh program, prosesor, atau pengguna ke sistem sumber daya. Mekanisme proteksi harus:
membedakan antara penggunaan yang sudah diberi izin dan yang belum.
specify the controls to be imposed.
provide a means of enforcement.
Jaringan
Sistem terdistribusi adalah sekumpulan prosesor yang tidak berbagi memori atau clock. Tiap prosesor mempunyai memori sendiri. Prosesor-prosesor tersebut terhubung melalui jaringan komunikasi Sistem terdistribusi menyediakan akses pengguna ke bermacam sumber-daya sistem. Akses tersebut menyebabkan:
Computation speed-up.
Increased data availability.
Enhanced reliability.
Command-Interpreter System
Sistem Operasi menunggu instruksi dari pengguna (command driven). Program yang membaca instruksi dan mengartikan control statements umumnya disebut: control-card interpreter, command-line interpreter, dan UNIX shell. Command-Interpreter System sangat bervariasi dari satu sistem operasi ke sistem operasi yang lain dan disesuaikan dengan tujuan dan teknologi I/O devices yang ada. Contohnya: CLI, Windows, Pen-based (touch), dan lain-lain.
Layanan Sistem Operasi
Eksekusi program adalah kemampuan sistem untuk "load" program ke memori dan menjalankan program. Operasi I/O: pengguna tidak dapat secara langsung mengakses sumber daya perangkat keras, sistem operasi harus menyediakan mekanisme untuk melakukan operasi I/O atas nama pengguna. Sistem manipulasi berkas dalah kemampuan program untuk operasi pada berkas (membaca, menulis, membuat, and menghapus berkas). Komunikasi adalah pertukaran data/ informasi antar dua atau lebih proses yang berada pada satu komputer (atau lebih). Deteksi error adalah menjaga kestabilan sistem dengan mendeteksi "error", perangkat keras mau pun operasi.
Efesisensi penggunaan sistem:
Resource allocator adalah mengalokasikan sumber-daya ke beberapa pengguna atau job yang jalan pada saat yang bersamaan.
Proteksi menjamin akses ke sistem sumber daya dikendalikan (pengguna dikontrol aksesnya ke sistem).
Accounting adalah merekam kegiatan pengguna, jatah pemakaian sumber daya (keadilan atau kebijaksanaan).
System Calls
System call menyediakan interface antara program (program pengguna yang berjalan) dan bagian OS. System call menjadi jembatan antara proses dan sistem operasi. System call ditulis dalam bahasa assembly atau bahasa tingkat tinggi yang dapat mengendalikan mesin (C). Contoh: UNIX menyediakan system call: read, write => operasi I/O untuk berkas.
Sering pengguna program harus memberikan data (parameter) ke OS yang akan dipanggil. Contoh pada UNIX: read(buffer, max_size, file_id);
Tiga cara memberikan parameter dari program ke sistem operasi:
Melalui registers (sumber daya di CPU).
Menyimpan parameter pada data struktur (table) di memori, dan alamat table tsb ditunjuk oleh pointer yang disimpan di register.
Push (store) melalui "stack" pada memori dan OS mengambilnya melalui pop pada stack tsb.
Mesin Virtual
Sebuah mesin virtual (Virtual Machine) menggunakan misalkan terdapat sistem program => control program yang mengatur pemakaian sumber daya perangkat keras. Control program = trap System call + akses ke perangkat keras. Control program memberikan fasilitas ke proses pengguna. Mendapatkan jatah CPU dan memori. Menyediakan interface "identik" dengan apa yang disediakan oleh perangkat keras => sharing devices untuk berbagai proses.
Mesin Virtual (MV) (MV) => control program yang minimal MV memberikan ilusi multitasking: seolah-olah terdapat prosesor dan memori ekslusif digunakan MV. MV memilah fungsi multitasking dan implementasi extended machine (tergantung proses pengguna) => flexible dan lebih mudah untuk pengaturan. Jika setiap pengguna diberikan satu MV => bebas untuk menjalankan OS (kernel) yang diinginkan pada MV tersebut. Potensi lebih dari satu OS dalam satu komputer. Contoh: IBM VM370: menyediakan MV untuk berbagai OS: CMS (interaktif), MVS, CICS, dll. Masalah: Sharing disk => OS mempunyai sistem berkas yang mungkin berbeda. IBM: virtual disk (minidisk) yang dialokasikan untuk pengguna melalui MV.
Konsep MV menyediakan proteksi yang lengkap untuk sumberdaya sistem, dikarenakan tiap MV terpisah dari MV yang lain. Namun, hal tersebut menyebabkan tidak adanya sharing sumberdaya secara langsung. MV merupakan alat yang tepat untuk penelitian dan pengembangan sistem operasi. Konsep MV susah untuk diimplementasi sehubungan dengan usaha yang diperlukan untuk menyediakan duplikasi dari mesin utama.
Perancangan Sistem dan Implementasi
Target untuk pengguna: sistem operasi harus nyaman digunakan, mudah dipelajari, dapat diandalkan, aman dan cepat. Target untuk sistem: sistem operasi harus gampang dirancang, diimplementasi, dan dipelihara, sebagaimana fleksibel, error, dan efisien.
Mekanisme dan Kebijaksanaan:
Mekanisme menjelaskan bagaimana melakukan sesuatu kebijaksanaan memutuskan apa yang akan dilakukan. Pemisahan kebijaksanaan dari mekanisme merupakan hal yang sangat penting; ini mengizinkan fleksibilitas yang tinggi bila kebijaksanaan akan diubah nanti.
Kebijaksanaan memutuskan apa yang akan dilakukan.
Pemisahan kebijaksanaan dari mekanisme merupakan hal yang sangat penting; ini mengizinkan fleksibilitas yang tinggi bila kebijaksanaan akan diubah nanti.
Implementasi Sistem biasanya menggunakan bahas assembly, sistem operasi sekarang dapat ditulis dengan menggunakan bahasa tingkat tinggi. Kode yang ditulis dalam bahasa tingkat tinggi: dapat dibuat dengan cepat, lebih ringkas, lebih mudah dimengerti dan didebug. Sistem operasi lebih mudah dipindahkan ke perangkat keras yang lain bila ditulis dengan bahasa tingkat tinggi.
System Generation (SYSGEN)
Sistem operasi dirancang untuk dapat dijalankan di berbagai jenis mesin; sistemnya harus di konfigurasi untuk tiap komputer. Program SYSGEN mendapatkan informasi mengenai konfigurasi khusus dari sistem perangkat keras.
Booting: memulai komputer dengan me-load kernel.
Bootstrap program: kode yang disimpan di code ROM yang dapat menempatkan kernel, memasukkannya kedalam memori, dan memulai eksekusinya.
Rangkuman
Sistem operasi telah berkembang selama lebih dari 40 tahun dengan dua tujuan utama. Pertama, sistem operasi mencoba mengatur aktivitas-aktivitas komputasi untuk memastikan pendayagunaan yang baik dari sistem komputasi tersebut. Kedua, menyediakan lingkungan yang nyaman untuk pengembangan dan jalankan dari program.
Pada awalnya, sistem komputer digunakan dari depan konsul. Perangkat lunak seperti assembler, loader, linkerdan compiler meningkatkan kenyamanan dari sistem pemrograman, tapi juga memerlukan waktu set-up yang banyak. Untuk mengurangi waktu set-up tersebut, digunakan jasa operator dan menggabungkan tugas-tugas yang sama (sistem batch). Sistem batch mengizinkan pengurutan tugas secara otomatis dengan menggunakan sistem operasi yang resident dan memberikan peningkatan yang cukup besar dalam utilisasi komputer. Komputer tidak perlu lagi menunggu operasi oleh pengguna. Tapi utilisasi CPU tetap saja rendah. Hal ini dikarenakan lambatnya kecepatan alat-alat untuk I/O relatif terhadap kecepatan CPU. Operasi off-line dari alat-alat yang lambat bertujuan untuk menggunakan beberapa sistem reader-to-tape dan tape-to-printer untuk satu CPU.
Untuk meningkatkan keseluruhan kemampuan dari sistem komputer, para developer memperkenalkan konsep multiprogramming. Dengan multiprogramming, beberapa tugas disimpan dalam memori dalam satu waktu; CPU digunakan secara bergantian sehingga menambah utilisasi CPU dan mengurangi total waktu yang dibutuhkan untuk menyelesaikan tugas-tugas tersebut. Multiprogramming, yang dibuat untuk meningkatkan kemampuan, juga mengizinkan time sharing. Sistem operasi yang bersifat time-shared memperbolehkan banyak pengguna untuk menggunakan komputer secara interaktif pada saat yang bersamaan. Komputer Personal adalah mikrokomputer yang dianggap lebih kecil dan lebih murah dibandingkan komputer mainframe. Sistem operasi untuk komputer-komputer seperti ini diuntungkan oleh pengembangan sistem operasi untuk komputer mainframe dalam beberapa hal. Namun, semenjak penggunaan komputer untuk keperluan pribadi, maka utilisasi CPU tidak lagi menjadi perhatian utama. Karena itu, beberapa desain untuk komputer mainframe tidak cocok untuk sistem yang lebih kecil.
Sistem parallel mempunyai lebih dari satu CPU yang mempunyai hubungan yang erat; CPU-CPU tersebut berbagi bus komputer, dan kadang-kadang berbagi memori dan perangkat yang lainnya. Sistem seperti itu dapat meningkatkan throughput dan reliabilititas. Sistem hard real-time sering kali digunakan sebagai alat pengontrol untuk applikasi yang dedicated. Sistem operasi yang hard real-time mempunyai batasan waktu yang tetap yang sudah didefinisikan dengan baik.Pemrosesan harus selesai dalam batasan-batasan yang sudah didefinisikan, atau sistem akan gagal. Sistem soft real-time mempunyai lebih sedikit batasan waktu yang keras, dan tidak mendukung penjadwalan dengan menggunakan batas akhir. Pengaruh dari internet dan World Wide Webbaru-baru ini telah mendorong pengembangan sistem operasi modern yang menyertakan web browser serta perangkat lunak jaringan dan komunikasi sebagai satu kesatuan.
Multiprogramming dan sistem time-sharing meningkatkan kemampuan komputer dengan melampaui batas operasi (overlap) CPU dan I/O dalam satu mesin. Hal seperti itu memerlukan perpindahan data antara CPU dan alat I/O, ditangani baik dengan polling atau interrupt-driven akses ke I/O port, atau dengan perpindahan DMA. Agar komputer dapat menjalankan suatu program, maka program tersebut harus berada di memori utama (memori utama). Memori utama adalah satu-satunya tempat penyimpanan yang besar yang dapat diakses secara langsung oleh prosessor, merupakan suatu array dari word atau byte, yang mempunyai ukuran ratusan sampai jutaan ribu. Setiap word memiliki alamatnya sendiri. Memori utama adalah tempat penyimpanan yang volatile, dimana isinya hilang bila sumber energinya (energi listrik) dimatikan. Kebanyakan sistem komputer menyediakan secondary storage sebagai perluasan dari memori utama. Syarat utama dari secondary storage adalah dapat menyimpan data dalam jumlah besar secara permanen. Secondary storage yang paling umum adalah disk magnetik, yang meyediakan penyimpanan untuk program mau pun data. Disk magnetik adalah alat penyimpanan data yang nonvolatile yang juga menyediakan akses secara random. Tape magnetik digunakan terutama untuk backup, penyimpanan informasi yang jarang digunakan, dan sebagai media pemindahan informasi dari satu sistem ke sistem yang lain.
Beragam sistem penyimpanan dalam sistem komputer dapat disusun dalam hirarki berdasarkan kecepatan dan biayanya. Tingkat yang paling atas adalah yang paling mahal, tapi cepat. Semakin kebawah, biaya perbit menurun, sedangkan waktu aksesnya semakin bertambah (semakin lambat). Sistem operasi harus memastikan operasi yang benar dari sistem komputer. Untuk mencegah pengguna program mengganggu operasi yang berjalan dalam sistem, perangkat keras mempunyai dua mode: mode pengguna dan mode monitor. Beberapa perintah (seperti perintah I/O dan perintah halt) adalah perintah khusus, dan hanya dapat dijalankan dalam mode monitor. Memori juga harus dilindungi dari modifikasi oleh pengguna. Timer mencegah terjadinya pengulangan secara terus menerus (infinite loop). Hal-hal tersebut (dual mode, perintah khusus, pengaman memori, timer interrupt) adalah blok bangunan dasar yang digunakan oleh sistem operasi untuk mencapai operasi yang sesuai.
Sistem operasi menyediakan banyak pelayanan. Di tingkat terrendah, sistem calls mengizinkan program yang sedang berjalan untuk membuat permintaan secara langsung dari sistem operasi. Di tingkat tertinggi, command interpreter atau shell menyediakan mekanisme agar pengguna dapat membuat permintaan tanpa menulis program. Command dapat muncul dari bekas sewaktu jalankan batch-mode, atau secara langsung dari terminal ketika dalam mode interaktive atau time-shared. Program sistem disediakan untuk memenuhi kebanyakan dari permintaan pengguna. Tipe dari permintaan beragam sesuai dengan levelnya. Level sistem call harus menyediakan fungsi dasar, seperti kontrol proses serta manipulasi alat dan bekas. Permintaan dengan level yang lebih tinggi (command interpreter atau program sistem) diterjemahkan kedalam urutan sistem call.
Pelayanan sistem dapat dikelompokkan kedalam beberapa kategori: kontrol program, status permintaan dan permintaan I/O. Program error dapat dipertimbangkan sebagai permintaan yang implisit untuk pelayanan. Bila sistem pelayanan sudah terdefinisi, maka struktur dari sistem operasi dapat dikembangkan. Berbagai macam tabel diperlukan untuk menyimpan informasi yang mendefinisikan status dari sistem komputer dan status dari sistem tugas. Perancangan dari suatu sistem operasi yang baru merupakan tugas yang utama. Sangat penting bahwa tujuan dari sistem sudah terdefinisi dengan baik sebelum memulai perancangan. Tipe dari sistem yang diinginkan adalah landasan dalam memilih beragam algoritma dan strategi yang akan digunakan. Karena besarnya sistem operasi, maka modularitas adalah hal yang penting. Merancang sistem sebagai suatu urutan dari layer atau dengan menggunakan mikrokernel merupakan salah satu teknik yang baik. Konsep virtual machine mengambil pendekatan layer dan memperlakukan baik itu kernel dari sistem operasi dan perangkat kerasnya sebagai suatu perangkat keras. Bahkan sistem operasi yang lain dapat dimasukkan diatas virtual machine tersebut. Setiap sistem operasi yang mengimplemen JVM dapat menjalankan semua program java, karena JVM mendasari dari sistem ke program java, menyediakan arsitektur tampilan yang netral.
Didalam daur perancangan sistem operasi, kita harus berhati-hati untuk memisahkan pembagian kebijakan (policy decision) dengan detail dari implementasi (mechanism). Pemisahan ini membuat fleksibilitas yang maksimal apabila policy decision akan diubah kemudian. Sistem operasi sekarang ini hampir selalu ditulis dengan menggunakan bahasa tingkat tinggi. Hal ini meningkatkan implementasi, perawatan portabilitas. Untuk membuat sistem operasi untuk suatu konfigurasi mesin tertentu, kita harus melakukan system generation.
Pertanyaan
1.Sebutkan tiga tujuan utama dari sistem operasi!
2.Sebutkan keuntungan dari multiprogramming!
3.Sebutkan perbedaan utama dari sistem operasi antara komputer mainframe dan PC?
4.Sebutkan kendala-kendala yang harus diatasi oleh programmer dalam menulis sistem operasi untuk lingkungan waktu nyata?
5.Jelaskan perbedaan antara symmetric dan asymmetric multiprocessing. Sebutkan keuntungan dan kerugian dari sistem multiprosessor!
6.Apakah perbedaan antara trap dan interrupt? Sebutkan penggunaan dari setiap fungsi tersebut!
7.Untuk jenis operasi apakah DMA itu berguna? Jelaskan jawabannya!
8.Sebutkan dua kegunaan dari memory cache! Problem apakah yang dapat dipecahkan dan juga muncul dengan adanya cache tersebut?
9.Beberapa CPU menyediakan lebih dari dua mode operasi. Sebutkan dua kemungkinan penggunaan dari mode tersebut?
10.Sebutkan lima kegiatan utama dari sistem operasi yang berhubungan dengan managemen proses!
11.Sebutkan tiga kegiatan utama dari sistem operasi yang berhubungan dengan managemen memori!
12.Sebutkan tiga kegiatan utama dari sistem operasi yang berhubungan dengan managemen secondary-storage!
13.Sebutkan lima kegiatan utama dari sistem operasi yang berhubungan dengan managemen berkas!
14.Apakah tujuan dari command interpreter? Mengapa biasanya hal tersebut terpisah dengan kernel?
Rujukan
CATATAN: Situs (URL) rujukan ini pernah diakses pada pertengahan tahun 2003 yang lalu. Terdapat kemungkinan, bahwa situs tersebut sekaranga ini telah berubah, atau telah dihapus.
1.http://www.csc.uvic.ca/~mcheng/360/notes/NOTES2.html
2.http://www.chipcenter.com/circuitcellar/march02/c0302dc4.htm
3.http://www.osdata.com/kind/history.htm
4.http://www.mcsr.olemiss.edu/unixhelp/concepts/history.html
5.http://www.cs.panam.edu/fox/CSCI4334/ch3.ppt
6.http://www.cis.umassd.edu/~rbalasubrama/
7.http://legion.virginia.edu/presentations/sc2000/sld001.htm
8.http://www.cs.wpi.edu/~cs502/s99/
9.http://cs-www.cs.yale.edu/homes/avi/os-book/osc/slide-dir/
10.http://www.hardware.fr/articles/338/page1.html
11.http://www.cs.technion.ac.il/~hagit/OSS98
12.http://www.ignou.ac.in/virtualcampus/adit/course/index-tr1.htm
13.http://www.techrescue.net/guides/insthware.asp
14.http://agt.buka.org/concept.html
15.http://kos.enix.org/pub/greenwald96synergy.pdf
Bab 2. Proses dan Thread
Daftar Isi
Proses
Penjadualan Proses
Operasi-Operasi Pada Proses
Hubungan Antara Proses
Thread
Model Multithreading
Penjadual CPU
Penjadualan Multiprocessor
Java Thread dan Algoritmanya
Kesimpulan
Soal-soal Latihan
Rujukan
Daftar Istilah
Proses
Satu selingan pada diskusi kita mengenai sistem operasi yaitu bahwa ada sebuah pertanyaan mengenai apa untuk menyebut semua aktivitas CPU. Sistem batch mengeksekusi jobs, sebagaimana suatu sistem time-shared telah menggunakan program pengguna, atau tugas-tugas/ pekerjaan-pekerjaan. Bahkan pada sistem tunggal, seperti Microsoft Windows dan Macintosh OS, seorang pengguna mampu untuk menjalankan beberapa program pada saat yang sama: sebuah Word Processor, Web Browser, dan paket e-mail. Bahkan jika pengguna dapat melakukan hanya satu program pada satu waktu, sistem operasi perlu untuk mendukung aktivitas program internalnya sendiri, seperti managemen memori. Dalam banyak hal, seluruh aktivitas ini adalah serupa, maka kita menyebut seluruh program itu proses-proses (processes).
Istilah job dan proses digunakan hampir dapat dipertukarkan pada tulisan ini. Walau kami pribadi lebih mneyukai istilah proses, banyak teori dan terminologi sistem-operasi dikembangkan selama suatu waktu ketika aktivitas utama sistem operasi adalah job processing. Akan menyesatkan untuk menghindari penggunaan istilah umum yang telah diterima bahwa memasukkn kata job (seperti penjadualan job) hanya karena proses memiliki job pengganti/ pendahulu.
Konsep Dasar dan Definisi Proses
Secara informal; proses adalah program dalam eksekusi. Suatu proses adalah lebih dari kode program, dimana kadang kala dikenal sebagai bagian tulisan. Proses juga termasuk aktivitas yang sedang terjadi, sebagaimana digambarkan oleh nilai pada program counter dan isi dari daftar prosesor/ processor's register. Suatu proses umumnya juga termasuk process stack, yang berisikan data temporer (seperti parameter metoda, address yang kembali, dan variabel lokal) dan sebuah data section, yang berisikan variabel global.
Kami tekankan bahwa program itu sendiri bukanlah sebuah proses; suatu program adalah satu entitas pasif; seperti isi dari sebuah berkas yang disimpan didalam disket, sebagaimana sebuah proses dalam suatu entitas aktif, dengan sebuah program counter yang mengkhususkan pada instruksi selanjutnya untuk dijalankan dan seperangkat sumber daya/ resource yang berkenaan dengannya.
Walau dua proses dapat dihubungkan dengan program yang sama, program tersebut dianggap dua urutan eksekusi yang berbeda. Sebagai contoh, beberapa pengguna dapat menjalankan copy yang berbeda pada mail program, atau pengguna yang sama dapat meminta banyak copy dari program editor. Tiap-tiap proses ini adakah proses yang berbeda dan walau bagian tulisan-text adalah sama, data section bervariasi. Juga adalah umum untuk memiliki proses yang menghasilkan banyak proses begitu ia bekerja. Kami mendiskusikan masalah tersebut pada bagian berjudul Hubungan Antara Proses.
Keadaan Proses
Sebagaimana proses bekerja, maka proses tersebut merubah state (keadaan statis/ asal). Status dari sebuah proses didefinisikan dalam bagian oleh aktivitas yang ada dari proses tersebut. Tiap proses mungkin adalah satu dari keadaan berikut ini:
New: Proses sedang dikerjakan/ dibuat.
Running: Instruksi sedang dikerjakan.
Waiting: Proses sedang menunggu sejumlah kejadian untuk terjadi (seperti sebuah penyelesaian I/O atau penerimaan sebuah tanda/ signal).
Ready: Proses sedang menunggu untuk ditugaskan pada sebuah prosesor.
Terminated: Proses telah selsesai melaksanakan tugasnya/ mengeksekusi.
Nama-nama tersebut adalah arbitrer/ berdasar opini, istilah tersebut bervariasi disepanjang sistem operasi. Keadaan yang mereka gambarkan ditemukan pada seluruh sistem. Namun, sistem operasi tertentu juga lebih baik menggambarkan keadaan/ status proses. Adalah penting untuk menyadari bahwa hanya satu proses dapat berjalan pada prosesor mana pun pada waktu kapan pun. Namun, banyak proses yang dapat ready atau waiting. Keadaan diagram yang berkaitan dangan keadaan tersebut dijelaskan pada Gambar 2-1.
Gambar 2-1. Keadaan Proses. Sumber: . . .
Process Control Block
Tiap proses digambarkan dalam sistem operasi oleh sebuah process control block (PCB) - juga disebut sebuah control block. Sebuah PCB ditunjukkan dalam Gambar 2-2. PCB berisikan banyak bagian dari informasi yang berhubungan dengan sebuah proses yang spesifik, termasuk ini:
Keadaan proses: Keadaan mungkin, new, ready, running, waiting, halted, dan juga banyak lagi.
Program counter: Counter mengindikasikan address dari perintah selanjutnya untuk dijalankan untuk proses ini.
CPU register: Register bervariasi dalam jumlah dan jenis, tergantung pada rancangan komputer. Register tersebut termasuk accumulator, index register, stack pointer, general-puposes register, ditambah code information pada kondisi apa pun. Besertaan dengan program counter, keadaan/ status informasi harus disimpan ketika gangguan terjadi, untuk memungkinkan proses tersebut berjalan/ bekerja dengan benar setelahnya (lihat Gambar 2-3).
Informasi managemen memori: Informasi ini dapat termasuk suatu informasi sebagai nilai dari dasar dan batas register, tabel page/ halaman, atau tabel segmen tergantung pada sistem memori yang digunakan oleh sistem operasi (lihat Bab 4).
Informasi pencatatan: Informasi ini termasuk jumlah dari CPU dan waktu riil yang digunakan, batas waktu, jumlah akun, jumlah job atau proses, dan banyak lagi.
Informasi status I/O: Informasi termasuk daftar dari perangkat I/O yang di gunakan pada proses ini, suatu daftar open berkas dan banyak lagi.
PCB hanya berfungsi sebagai tempat menyimpan/ gudang untuk informasi apa pun yang dapat bervariasi dari prose ke proses.
Gambar 2-2. Process Control Block. Sumber: . . .
Gambar 2-3. CPU Register. Sumber: . . .
Threads
Model proses yang didiskusikan sejauh ini telah menunjukkan bahwa suatu proses adalah sebuah program yang menjalankan eksekusi thread tunggal. Sebagai contoh, jika sebuah proses menjalankan sebuah program Word Processor, ada sebuah thread tunggal dari instruksi-instruksi yang sedang dilaksanakan.
Kontrol thread tunggal ini hanya memungkinkan proses untuk menjalankan satu tugas pada satu waktu. Banyak sistem operasi modern telah memiliki konsep yang dikembangkan agar memungkinkan sebuah proses untuk memiliki eksekusi multithreads, agar dapat dapat secara terus menerus mengetik dalam karakter dan menjalankan pengecek ejaan didalam proses yang sama. Maka sistem operasi tersebut memungkinkan proses untuk menjalankan lebih dari satu tugas pada satu waktu. Pada bagian berjudul Thread akan dibahas proses multithreaded.
Penjadualan Proses
Tujuan dari multiprogramming adalah untuk memiliki sejumlah proses yang berjalan pada sepanjang waktu, untuk memaksimalkan penggunaan CPU. Tujuan dari pembagian waktu adalah untuk mengganti CPU diantara proses-proses yang begitu sering sehingga pengguna dapat berinteraksi dengan setiap program sambil CPU bekerja. Untuk sistem uniprosesor, tidak akan ada lebih dari satu proses berjalan. Jika ada proses yang lebih dari itu, yang lainnya akan harus menunggu sampai CPU bebas dan dapat dijadualkan kembali.
Penjadualan Antrian
Ketika proses memasuki sistem, mereka diletakkan dalam antrian job. Antrian ini terdiri dari seluruh proses dalam sistem. Proses yang hidup pada memori utama dan siap dan menunggu/ wait untuk mengeksekusi disimpan pada sebuah daftar bernama ready queue. Antrian ini biasanya disimpan sebagai daftar penghubung. Sebuah header ready queue berisikan penunjuk kepada PCB-PCB awal dan akhir. Setiap PCB memiliki pointer field yang menunjukkan proses selanjutnya dalam ready queue.
Juga ada antrian lain dalam sistem. Ketika sebuah proses mengalokasikan CPU, proses tersebut berjalan/bekerja sebentar lalu berhenti, di interupsi, atau menunggu suatu kejadian tertentu, seperti penyelesaian suatu permintaan I/O. Pada kasus ini sebuah permintaan I/O, permintaan seperti itu mungkin untuk sebuah tape drive yang telah diperuntukkan, atau alat yang berbagi, seperti disket. Karena ada banyak proses dalam sistem, disket bisa jadi sibuk dengan permintaan I/O untuk proses lainnya. Maka proses tersebut mungkin harus menunggu untuk disket tersebut. Daftar dari proses yang menunggu untuk peralatan I/O tertentu disebut sebuah device queue. Tiap peralatan memiliki device queuenya sendiri (Lihat Gambar 2-4).
Gambar 2-4. Device Queue. Sumber: . . .
Reprensentasi umum untuk suatu diskusi mengenai penjadualan proses adalah diagram antrian, seperti pada Gambar 2-5. Setiap kotak segi empat menunjukkan sebuah antrian. Dua tipe antrian menunjukan antrian yang siap dan suatu perangkat device queues. Lingkaran menunjukkan sumber-sumber yang melayani sistem. Sebuah proses baru pertama-tama ditaruh dalam ready queue. Lalu menunggu dalam ready queue sampai proses tersebut dipilih untuk dikerjakan/lakukan atau di dispatched. Begitu proses tersebut mengalokasikan CPU dan menjalankan/ mengeksekusi, satu dari beberapa kejadian dapat terjadi.
Proses tersebut dapat mengeluarkan sebuah permintaan I/O, lalu di tempatkan dalam sebuah antrian I/O.
Proses tersebut dapat membuat subproses yang baru dan menunggu terminasinya sendiri.
Proses tersebut dapat digantikan secara paksa dari CPU, sebagai hasil dari suatu interupsi, dan diletakkan kembali dalam ready queue.
Gambar 2-5. Diagram Anrian. Sumber: . . .
Dalam dua kasus pertama, proses akhirnya berganti dari waiting state menjadi ready state, lalu diletakkan kembali dalam ready queue. Sebuah proses meneruskan siklus ini sampai berakhir, disaat dimana proses tersebut diganti dari seluruh queue dan memiliki PCB nya dan sumber-sumber/ resources dialokasikan kembali.
Penjadual
Sebuah proses berpindah antara berbagai penjadualan antrian selama umur hidupnya. Sistem operasi harus memilih, untuk keperluan penjadualan, memproses antrian-antrian ini dalam cara tertentu. Pemilihan proses dilaksanakan oleh penjadual yang tepat/ cocok. Dalam sistem batch, sering ada lebih banyak proses yang diserahkan daripada yang dapat dilaksanakan segera. Proses ini dipitakan/ disimpan pada suatu alat penyimpan masal (biasanya disket), dimana proses tersebut disimpan untuk eksekusi dilain waktu. Penjadualan long term, atau penjadual job, memilih proses dari pool ini dan mengisinya kedalam memori eksekusi.
Sebuah proses dapat mengeksekusi untuk hanya beberapa milidetik sebelum menunggu permintaan I/O. Seringkali, penjadualan shorterm mengeksekusi paling sedikit sekali setiap 100 milidetik. Karena durasi waktu yang pendek antara eksekusi, penjadualan shorterm haruslah cepat. Jika memerlukan 10 mili detik untuk menentukan suatu proses eksekusi selama 100 mili detik, maka 10/(100 + 10) = 9 persen CPU sedang digunakan (terbuang) hanya untuk pekerjaan penjadualan.
Penjadualan longterm pada sisi lain, mengeksekusi jauh lebih sedikit. Mungkin ada beberapa menit antara pembuatan proses baru dalam sistem. Penjadualan longterm mengkontrol derajat multiprogramming (jumlah proses dalam memori). Jika derajat multiprogramming stabil, lalu tingkat rata-rata dari penciptaan proses harus sama dengan tingkat kepergian rata rata dari proses yang meninggalkan sistem. Maka penjadualan longterm mungkin diperlukan untuk dipanggil hanya ketika suatu proses meninggalkan sistem. Karena interval yang lebih panjang antara eksekusi, penjadualan longterm dapat memakai waktu yang lebih lama untuk menentukan proses mana yang harus dipilih untuk dieksekusi.
Adalah penting bagi penjadualan longterm membuat seleksi yang hati-hati. Secara umum, kebanyakan proses dapat dijelaskan sebagai I/O bound atau CPU bound. Sebuah proses I/O bound adalah salah satu yang membuang waktunya untuk mengerjakan I/O dari pada melakukan perhitungan. Suatu proses CPU-bound, pada sisi lain, adalah salah satu yang jarang menghasilkan permintaan I/O, menggunakan lebih banyak waktunya melakukan banyak komputasi daripada yang digunakan oleh proses I/O bound. Penting untuk penjadualan longterm memilih campuran proses yang baik antara proses I/O bound dan CPU bound. Jika seluruh proses adalah I/O bound, ready queue akan hampir selalu kosong, dan penjadualan short term akan memiliki sedikit tugas. Jika seluruh proses adalah CPU bound, I/O waiting queue akan hampir selalu kosong, peralatan akan tidak terpakai, dan sistem akan menjadi tidak imbang. Sistem dengan kinerja yang terbaik akan memiliki kombinasi proses CPU bound dan I/O bound.
Gambar 2-6. Penjadual Medium-term. Sumber: . . .
Pada sebagian sistem, penjadual long term dapat tidak turut serta atau minimal. Sebagai contoh, sistem time-sharing seperti UNIX sering kali tidak memiliki penjadual long term. Stabilitas sistem-sistem ini bergantung pada keterbatasan fisik (seperti jumlah terminal yang ada) atau pada penyesuaian sendiri secara alamiah oleh manusia sebagai pengguna. Jika kinerja menurun pada tingkat yang tidak dapat diterima, sebagian pengguna akan berhenti.
Sebagian sistem operasi, seperti sistem time sharing, dapat memperkenalkan sebuah tambahan, penjadualan tingkat menengah. Penjadual medium-term ini digambarkan pada Gambar 2-5. Ide utama/kunci dibelakang sebuah penjadual medium term adalah kadang kala akan menguntungkan untuk memindahkan proses dari memori (dan dari pengisian aktif dari CPU), dan maka untuk mengurangi derajat dari multiprogramming. Dikemudian waktu, proses dapat diperkenalkan kedalam memori dan eksekusinya dapat dilanjutkan dimana proses itu di tinggalkan/ diangkat. Skema ini disebut swapping. Proses di swapped out, dan lalu di swapped in, oleh penjadual jangka menengah. Swapping mungkin perlu untuk meningkatkan pencampuran proses, atau karena suatu perubahan dalam persyaratan memori untuk dibebaskan. Swapping dibahas dalam bagian berjudul Penukaran (Swap) di Bab 4.
Alih Konteks
Mengganti CPU ke proses lain memerlukan penyimpanan suatu keadaan proses lama (state of old process) dan kemudian beralih ke proses yang baru. Tugas tersebut diketahui sebagai alih konteks (context switch). Alih konteks sebuah proses digambarkan dalam PCB suatu proses; termasuk nilai dari CPU register, status proses (lihat Gambar 2-7). dan informasi managemen memori. Ketika alih konteks terjadi, kernel menyimpan konteks dari proses lama kedalam PCB nya dan mengisi konteks yang telah disimpan dari process baru yang telah terjadual untuk berjalan. Pergantian waktu konteks adalah murni overhead, karena sistem melakukan pekerjaan yang tidak perlu. Kecepatannya bervariasi dari mesin ke mesin, bergantung pada kecepatan memori, jumlah register yang harus di copy, dan keberadaan instruksi khusus (seperti instruksi tunggal untuk mengisi atau menyimpan seluruh register). Tingkat kecepatan umumnya berkisar antara 1 sampai 1000 mikro detik
Gambar 2-7. Alih Konteks. Sumber: . . .
Waktu alih konteks sangat begantung pada dukungan perangkat keras. Sebagai contoh, prosesor seperti UltraSPARC menyediakan dua rangkap register. Sebuah alih konteks hanya memasukkan perubahan pointer ke perangkat register yang ada. Tentu saja, jika ada lebih proses-proses aktif yang ada dari pada yang ada di perangkat register, sistem menggunakan bantuan untuk meng-copy data register pada dan dari memori, sebagaimana sebelumnya. Semakin sistem operasi kompleks, makin banyak pekerjaan yang harus dilakukan selama alih konteks. Sebagaimana dilihat pada Bab 4, teknik managemen memori tingkat lanjut dapat mensyaratkan data tambahan untuk diganti dengan tiap konteks. Sebagai contoh, ruang alamat dari proses yang ada harus dijaga sebagai ruang pada pekerjaan berikutnya untuk digunakan. Bagaimana ruang alamat di jaga, berapa banyak pekerjaan dibutuhkan untuk menjaganya, tergantung pada metoda managemen memori dari sistem operasi. Sebagaimana akan kita lihat pada Bab 4, alih konteks telah menjadi suatu keharusan, bahwa programmer menggunakan struktur (threads) untuk menghindarinya kapan pun memungkinkan.
Gambar 2-8. Pohon Proses. Sumber: . . .
Operasi-Operasi Pada Proses
Proses dalam sistem dapat dieksekusi secara bersama-sama, proses tersebut harus dibuat dan dihapus secara dinamis. Maka, sistem operasi harus menyediakan suatu mekanisme umtuk pembuatan proses dan terminasi proses.
Gambar 2-9. Operasi pada Proses. Sumber: . . .
Pembuatan Proses
Suatu proses dapat membuat beberapa proses baru, melalui sistem pemanggilan pembuatan proses, selama jalur eksekusi. Pembuatan proses dinamakan induk proses, sebagaimana proses baru di sebut anak dari proses tersbut. Tiap proses baru tersebut dapat membuat proses lainnya, membentuk suatu pohon proses (lihat Gambar 2-7).
Secara umum, suatu proses akan memerlukan sumber tertentu (waktu CPU, memori, berkas, perangkat I/O) untuk menyelesaikan tugasnya. Ketika suatu proses membuat sebuah subproses, sehingga subproses dapat mampu untuk memperoleh sumbernya secara langsung dari sistem operasi. Induk mungkin harus membatasi sumber diantara anaknya, atau induk dapat berbagi sebagian sumber (seperti memori berkas) diantara beberapa dari anaknya. Membatasi suatu anak proses menjadi subset sumber daya induknya mencegah proses apa pun dari pengisian sistem yang telalu banyak dengan menciptakan terlalu banyak subproses.
Sebagai tambahan pada berbagai sumber fisik dan logis bahwa suatu proses diperoleh ketika telah dibuat, data pemula (masukan) dapat turut lewat oleh induk proses sampai anak proses. Sebagai contoh, anggap suatu proses yang fungsinya untuk menunjukkan status sebuah berkas, katakan F1, pada layar terminal. Ketika dibuat, akan menjadi sebagai sebuah masukan dari proses induknya, nama dari berkas F1, dan akan mengeksekusi menggunakan kumpulan data tersebut untuk memperoleh informasi yang diinginkan. Proses tersebut juga mendapat nama dari perangkat luar. Sebagian sistem operasi melewati sumber-sumber ke anak proses. Pada sistem tersebut, proses baru bisa mendapat dua berkas terbuka yang baru, F1 dan perangkat terminal dan hanya perlu untuk mentransfer data antara kedua berkas tersebut.
Ketika suatu proses membuat proses baru, dua kemungkinan ada dalam term eksekusi:
1.Induk terus menerus untuk mengeksekusi secara bersama-sama dengan anaknya.
2.Induk menunggu sampai sebagian dari anaknya telah diakhiri/terminasi.
Juga ada dua kemungkinan dalam term dari address space pada proses baru:
1.Anak proses adalah duplikat dari induk proses.
2.Anak proses memiliki program yang terisikan didalamnya.
Untuk mengilustrasikan implementasi yang berbeda ini, mari kita mempelajari sistem operasi UNIX. Dalam UNIX, tiap proses diidentifikasi oleh pengidentifikasi proses, yang merupakan integer yang unik. Proses baru dibuat oleh sistem pemanggilan fork system call. Proses baru tersebut terdiri dari sebuah copy ruang alamat dari proses aslinya (original). Mekanisme tersebut memungkinkan induk proses untuk berkomunikasi dengan mudah dengan anak proses. Kedua proses (induk dan anak) meneruskan eksekusi pada instruksi setelah fork dengan satu perbedaan: Kode kembali untuk fork adalah nol untuk proses baru (anak), sebagaimana proses pengidentifikasi non nol (non zero) dari anak dikembalikan kepada induk.
Umumnya, sistem pemanggilan execlp digunakan setelah sistem pemanggilan fork. Oleh satu dari dua proses untuk menggantikan proses ruang memori dengan program baru. Sistem pemanggilan execlp mengisi suatu berkas binary kedalam memori (menghancurkan gambar memori pada program yang berisikan sistem pemanggilan execlp) dan memulai eksekusinya. Dengan cara ini, kedua proses mampu untuk berkomunikasi, dan lalu untuk pergi ke arah yang berbeda. Induk lalu dapat membuat anak yang lebh banyak atau jika induk tidak punya hal lain untuk dilakukan ketika anak bekerja, induk dapat mengeluarkan sistem pemanggilan wait untuk tidak menggerakkan dirinya sendiri pada suatu antrian yang siap sampai anak berhenti. Program C ditunjukkan pada Gambar 2-10 mengilustrasikan sistem pemanggilan pada UNIX yang sebelumnya dijelaskan. Induk membuat anak proses menggunakan sistem pemanggilan fork(). Kini kita mempunyai dua proses yang berbeda yang menjalankan sebuah copy pada program yang sama. Nilai dari pid untuk anak proses adalah nol (zero): maka untuk induk adalah nilai integer yang lebih besar dari nol. Anak proses meletakkan ruang alamatnya dengan UNIX command /bin/ls (digunakan untuk mendapatkan pendaftaran directory) menggunakan sistem pemanggilan execlp(). Ketika anak proses selesai, induk proses menyimpulkan dari pemanggilan untuk wait() dimana induk proses menyelesaikannya dengan menggunakan sistem pemanggilan exit().
Secara kontras, sistem operasi DEC VMS membuat sebuah proses baru dengan mengisi program tertentu kedalam proses tersebut, dan memulai pekerjaannya. Sistem operasi Microsoft Windows NT mendukung kedua model: Ruang alamat induk proses dapat di duplikasi, atau induk dapat menspesifikasi nama dari sebuah program untuk sistem operasi untuk diisikan kedalam ruang alamat pada proses baru.
Terminasi Proses
Sebuah proses berakhir ketika proses tersebut selesai mengeksekusi pernyataan akhirnya dan meminta sistem operasi untuk menghapusnya dengan menggunakan sistem pemanggilan exit. Pada titik itu, proses tersebut dapat mengembalikan data (keluaran) pada induk prosesnya (melalui sistem pemanggilan wait) Seluruh sumber-sumber dari proses-termasuk memori fisik dan virtual, membuka berkas, dan penyimpanan I/O di tempatkan kembali oleh sistem operasi.
Ada situasi tambahan tertentu ketika terminasi terjadi. Sebuah proses dapat menyebabkan terminasi dari proses lain melalui sistem pemanggilan yang tepat (contoh abort). Biasanya, sistem seperti itu dapat dipanggil hanya oleh induk proses tersebut yang akan diterminasi. Bila tidak, pengguna dapat secara sewenang-wenang membunuh job antara satu sama lain. Catat bahwa induk perlu tahu identitas dari anaknya. Maka, ketika satu proses membuat proses baru, identitas dari proses yang baru diberikan kepada induknya.
Induk dapat menterminasi/ mengakhiri satu dari anaknya untuk beberapa alasan, seperti:
Anak telah melampaui kegunaannya atas sebagaian sumber yang telah diperuntukkan untuknya.
Pekerjaan yang ditugaskan kepada anak telah keluar, dan sistem operasi tidak memeperbolehkan sebuah anak untuk meneruskan jika induknya berakhir.
Untuk menentukan kasus pertama, induk harus memiliki mekanisme untuk memeriksa status anaknya. Banyak sistem, termasuk VMS, tidak memperbolehkan sebuah anak untuk ada jika induknya telah berakhir. Dalam sistem seperti ini, jika suatu proses berakhir (walau secara normal atau tidak normal), maka seluruh anaknya juga harus diterminasi. Fenomena ini, mengacu pada terminasi secara cascading, yang normalnya dimulai oleh sistem operasi.
Untuk mengilustrasikan proses eksekusi dan proses terminasi, kita menganggap bahwa, dalam UNIX, kami dapat mengakhiri suatu proses dengan sistem pemanggilan exit; proses induknya dapat menunggu untuk terminasi anak proses dengan menggunakan sistem pemanggilan wait. Sistem pemanggilan wait kembali ke pengidentifikasi proses dari anak yang telah diterminasi, maka induk dapat memberitahu kemungkinanan anak mana yang telah diterminasi. Jika induk menterminasi. Maka, anaknya masih punya sebuah induk untuk mengumpulkan status mereka dan mengumpulkan statistik eksekusinya.
Hubungan Antara Proses
Sebelumnya kita telah ketahui seluk beluk dari suatu proses mulai dari pengertiannya, cara kerjanya, sampai operasi-operasinya seperti proses pembentukannya dan proses pemberhentiannya setelah selesai melakukan eksekusi. Kali ini kita akan mengulas bagaimana hubungan antar proses dapat berlangsung, misal bagaimana beberapa proses dapat saling berkomunikasi dan bekerja-sama.
Proses yang Kooperatif
Proses yang bersifat simultan (concurrent) dijalankan pada sistem operasi dapat dibedakaan menjadi yaitu proses independent dan proses kooperatif. Suatu proses dikatakan independen apabila proses tersebut tidak dapat terpengaruh atau dipengaruhi oleh proses lain yang sedang dijalankan pada sistem. Berarti, semua proses yang tidak membagi data apa pun (baik sementara/ tetap) dengan proses lain adalah independent. Sedangkan proses kooperatif adalah proses yang dapat dipengaruhi atau pun terpengaruhi oleh proses lain yang sedang dijalankan dalam sistem. Dengan kata lain, proses dikatakan kooperatif bila proses dapat membagi datanya dengan proses lain.
Ada empat alasan untuk penyediaan sebuah lingkungan yang memperbolehkan terjadinya proses kooperatif:
1.Pembagian informasi: apabila beberapa pengguna dapat tertarik pada bagian informasi yang sama (sebagai contoh, sebuah berkas bersama), kita harus menyediakan sebuah lingkungan yang mengizinkan akses secara terus menerus ke tipe dari sumber-sumber tersebut.
2.Kecepatan penghitungan/ komputasi: jika kita menginginkan sebuah tugas khusus untuk menjalankan lebih cepat, kita harus membagi hal tersebut ke dalam subtask, setiap bagian dari subtask akan dijalankan secara parallel dengan yang lainnya. Peningkatan kecepatan dapat dilakukan hanya jika komputer tersebut memiliki elemen-elemen pemrosesan ganda (seperti CPU atau jalur I/O).
3.Modularitas: kita mungkin ingin untuk membangun sebuah sistem pada sebuah model modular-modular, membagi fungsi sistem menjadi beberapa proses atau threads.
4.Kenyamanan: bahkan seorang pengguna individu mungkin memiliki banyak tugas untuk dikerjakan secara bersamaan pada satu waktu. Sebagai contoh, seorang pengguna dapat mengedit, memcetak, dan meng-compile secara paralel.
Gambar 2-11. Program Produser Konsumer. Sumber: . . .
import java.util.*;
public class BoundedBuffer {
public BoundedBuffer() {
// buffer diinisialisasikan kosong
count = 0;
in = 0;
out = 0;
buffer = new Object[BUFFER_SIZE];
}
// produser memanggil method ini
public void enter( Object item ) {
while ( count == BUFFER_SIZE )
; // do nothing
// menambahkan suatu item ke dalam buffer
++count;
buffer[in] = item;
in = ( in + 1 ) % BUFFER_SIZE;
if ( count == BUFFER_SIZE )
System.out.println( "Producer Entered " +
item + " Buffer FULL" );
else
System.out.println( "Producer Entered " +
item + " Buffer Size = " + count );
}
// consumer memanggil method ini
public Object remove() {
Object item ;
while ( count == 0 )
; // do nothing
// menyingkirkan suatu item dari buffer
--count;
item = buffer[out];
out = ( out + 1 ) % BUFFER_SIZE;
if ( count == 0 )
System.out.println( "Consumer consumed " +
item + " Buffer EMPTY" );
else
System.out.println( "Consumer consumed " +
item + " Buffer Size = " +count );
return item;
}
public static final int NAP_TIME = 5;
private static final int BUFFER_SIZE = 5;
private volatile int count;
private int in; // arahkan ke posisi kosong selanjutnya
private int out; // arahkan ke posisi penuh selanjutnya
private Object[] buffer;
}
Sebuah proses produser membentuk informasi yang dapat digunakan oleh konsumen proses. Sebagai contoh sebuah cetakan program yang membuat banyak karakter yang diterima oleh driver pencetak. Untuk memperbolehkan produser dan konsumer proses agar dapat berjalan secara terus menerus, kita harus menyediakan sebuah item buffer yang dapat diisi dengan proses produser dan dikosongkan oleh proses konsumer. Proses produser dapat memproduksi sebuah item ketika konsumer sedang mengkonsumsi item yang lain. Produser dan konsumer harus dapat selaras. Konsumer harus menunggu hingga sebuah item diproduksi.
Komunikasi Proses Dalam Sistem
Cara lain untuk meningkatkan efek yang sama adalah untuk sistem operasi yaitu untuk menyediakan alat-alat proses kooperatif untuk berkomunikasi dengan yang lain lewat sebuah komunikasi dalam proses (IPC = Inter-Process Communication). IPC menyediakan sebuah mekanisme untuk mengizinkan proses-proses untuk berkomunikasi dan menyelaraskan aksi-aksi mereka tanpa berbagi ruang alamat yang sama. IPC adalah khusus digunakan dalam sebuah lingkungan yang terdistribusi dimana proses komunikasi tersebut mungkin saja tetap ada dalam komputer-komputer yang berbeda yang tersambung dalam sebuah jaringan. IPC adalah penyedia layanan terbaik dengan menggnakan sebuah sistem penyampaian pesan, dan sistem-sistem pesan dapat diberikan dalam banyak cara.
Sistem Penyampaian Pesan
Fungsi dari sebuah sistem pesan adalah untuk memperbolehkan komunikasi satu dengan yang lain tanpa perlu menggunakan pembagian data. Sebuah fasilitas IPC menyediakan
paling sedikit dua operasi yaitu kirim (pesan) dan terima (pesan). Pesan dikirim dengan sebuah proses yang dapat dilakukan pada ukuran pasti atau variabel. Jika hanya pesan dengan ukuran pasti dapat dikirimkan, level sistem implementasi adalah sistem yang sederhana. Pesan berukuran variabel menyediakan sistem implementasi level yang lebih kompleks.
Berikut ini ada beberapa metode untuk mengimplementasikan sebuah jaringan dan operasi pengiriman/ penerimaan secara logika:
Komunikasi langsung atau tidak langsung.
Komunikasi secara simetris/ asimetris.
Buffer otomatis atau eksplisit.
Pengiriman berdasarkan salinan atau referensi.
Pesan berukuran pasti dan variabel.
Komunikasi Langsung
Proses-proses yang ingin dikomunikasikan harus memiliki sebuah cara untuk memilih satu dengan yang lain. Mereka dapat menggunakan komunikasi langsung/ tidak langsung.
Setiap proses yang ingin berkomunikasi harus memiliki nama yang bersifat eksplisit baik penerimaan atau pengirim dari komunikasi tersebut. Dalam konteks ini, pengiriman dan penerimaan pesan secara primitive dapat dijabarkan sebagai:
Send (P, message) - mengirim sebuah pesan ke proses P.
Receive (Q, message) - menerima sebuah pesan dari proses Q.
Sebuah jaringan komunikasi pada bahasan ini memiliki beberapa sifat, yaitu:
Sebuah jaringan yang didirikan secara otomatis diantara setiap pasang dari proses yang ingin dikomunikasikan. Proses tersebut harus mengetahui identitas dari semua yang ingin dikomunikasikan.
Sebuah jaringan adalah terdiri dari penggabungan dua proses.
Diantara setiap pesan dari proses terdapat tepat sebuah jaringan.
Pembahasan ini memperlihatkan sebuah cara simetris dalam pemberian alamat. Oleh karena itu, baik keduanya yaitu pengirim dan penerima proses harus memberi nama bagi yang lain untuk berkomunikasi, hanya pengirim yang memberikan nama bagi penerima sedangkan penerima tidak menyediakan nama bagi pengirim. Dalam konteks ini, pengirim dan penerima secara sederhana dapat dijabarkan sebagai:
Send (P, message) - mengirim sebuah pesan kepada proses P.
Receive (id, message) - menerima sebuah pesan dari semua proses. Variabel id diatur sebagai nama dari proses dengan komunikasi.
Komunikasi Tidak Langsung
Dengan komunikasi tidak langsung, pesan akan dikirimkan pada dan diterima dari/ melalui mailbox (kotak surat) atau terminal-terminal, sebuah mailbox dapat dilihat secara abstrak sebagai sebuah objek didalam setiap pesan yang dapat ditempatkan dari proses dan dari setiap pesan yang bias dipindahkan. Setiap kotak surat memiliki sebuah identifikasi (identitas) yang unik, sebuah proses dapat berkomunikasi dengan beberapa proses lain melalui sebuah nomor dari mailbox yang berbeda. Dua proses dapat saling berkomunikasi apabila kedua proses tersebut sharing mailbox. Pengirim dan penerima dapat dijabarkan sebagai:
Send (A, message) - mengirim pesan ke mailbox A.
Receive (A, message) - menerima pesan dari mailbox A.
Dalam masalah ini, link komunikasi mempunyai sifat sebagai berikut:
Sebuah link dibangun diantara sepasang proses dimana kedua proses tersebut membagi mailbox.
Sebuah link mungkin dapat berasosiasi dengan lebih dari dua proses.
Diantara setiap pasang proses komunikasi, mungkin terdapat link yang berbeda-beda, dimana setiap link berhubungan pada satu mailbox.
Misalkan terdapat proses P1, P2 dan P3 yang semuanya share mailbox. Proses P1 mengirim pesan ke A, ketika P2 dan P3 masing-masing mengeksekusi sebuah kiriman dari A. Proses mana yang akan menerima pesan yang dikirim P1? Jawabannya tergantung dari jalur yang kita pilih:
Mengizinkan sebuah link berasosiasi dengan paling banyak 2 proses.
Mengizinkan paling banyak satu proses pada suatu waktu untuk mengeksekusi hasil kiriman (receive operation).
Mengizinkan sistem untuk memilih secara mutlak proses mana yang akan menerima pesan (apakah itu P2 atau P3 tetapi tidak keduanya, tidak akan menerima pesan). Sistem mungkin mengidentifikasi penerima kepada pengirim.
Mailbox mungkin dapat dimiliki oleh sebuah proses atau sistem operasi. Jika mailbox dimiliki oleh proses, maka kita mendefinisikan antara pemilik (yang hanya dapat menerima pesan melalui mailbox) dan pengguna dari mailbox (yang hanya dapat mengirim pesan ke mailbox). Selama setiap mailbox mempunyai kepemilikan yang unik, maka tidak akan ada kebingungan tentang siapa yang harus menerima pesan dari mailbox. Ketika proses yang memiliki mailbox tersebut diterminasi, mailbox akan hilang. Semua proses yang mengirim pesan ke mailbox ini diberi pesan bahwa mailbox tersebut tidak lagi ada.
Dengan kata lain, mempunyai mailbox sendiri yang independent, dan tidak melibatkan proses yang lain. Maka sistem operasi harus memiliki mekanisme yang mengizinkan proses untuk melakukan hal-hal dibawah ini:
Membuat mailbox baru.
Mengirim dan menerima pesan melalui mailbox.
Menghapus mailbox.
Proses yang membuat mailbox pertama kali secara default akan memiliki mailbox tersebut. Untuk pertama kali, pemilik adalah satu-satunya proses yang dapat menerima pesan melalui mailbox ini. Bagaimana pun, kepemilikan dan hak menerima pesan mungkin dapat dialihkan ke proses lain melalui sistem pemanggilan.
Sinkronisasi
Komunikasi antara proses membutuhkan place by calls untuk mengirim dan menerima data primitive. Terdapat rancangan yang berbeda-beda dalam implementasi setiap primitive. Pengiriman pesan mungkin dapat diblok (blocking) atau tidak dapat dibloking (nonblocking) - juga dikenal dengan nama sinkron atau asinkron.
Pengiriman yang diblok: Proses pengiriman di blok sampai pesan diterima oleh proses penerima (receiving process) atau oleh mailbox.
Pengiriman yang tidak diblok: Proses pengiriman pesan dan mengkalkulasi operasi.
Penerimaan yang diblok: Penerima mem blok samapai pesan tersedia.
Penerimaan yang tidak diblok: Penerima mengembalikan pesan valid atau null.
Buffering
Baik komunikasi itu langsung atau tak langsung, penukaran pesan oleh proses memerlukan antrian sementara. Pada dasarnya, terdapat tiga jalan dimana antrian tersebut diimplementasikan:
Kapasitas nol: antrian mempunyai panjang maksimum 0, maka link tidak dapat mempunyai penungguan pesan (message waiting). Dalam kasus ini, pengirim harus memblok sampai penerima menerima pesan.
Kapasitas terbatas: antrian mempunyai panjang yang telah ditentukan, paling banyak n pesan dapat dimasukkan. Jika antrian tidak penuh ketika pesan dikirimkan, pesan yang baru akan menimpa, dan pengirim pengirim dapat melanjutkan eksekusi tanpa menunggu. Link mempunyai kapasitas terbatas. Jika link penuh, pengirim harus memblok sampai terdapat ruang pada antrian.
Kapasitas tak terbatas: antrian mempunyai panjang yang tak terhingga, maka, semua pesan dapat menunggu disini. Pengirim tidak akan pernah di blok.
Contoh Produser-Konsumer
Sekarang kita mempunyai solusi problem produser-konsumer yang menggunakan penyampaian pesan. Produser dan konsumer akan berkomunikasi secara tidak langsung menggunakan mailbox yang dibagi. Buffer menggunakan java.util.Vector class sehingga buffer mempunyai kapasitas tak terhingga. Dan send() dan read() method adalah nonblocking. Ketika produser memproduksi suatu item, item tersebut diletakkan ke mailbox melalui send() method. Konsumer menerima item dari mailbox menggunakan receive() method. Karena receive() nonblocking, consumer harus mengevaluasi nilai dari Object yang di-return dari receive(). Jika null, mailbox kosong.
Gambar 2-12. Program Produser Konsumer Alternatif. Sumber: . . .
import java.util.*;
public class Producer extends Thread {
private MessageQueueueue mbox;
public Producer( MessageQueueueue m ) {
mbox = m;
}
public void run() {
Date message;
while ( true ) {
int sleeptime = ( int ) ( Server.NAP_TIME * Math.random() );
System.out.println( "Producer sleeping for " +
sleeptime + " seconds" );
try {
Thread.sleep(sleeptime*1000);
} catch( InterruptedException e ) {}
message = new Date();
System.out.println( "Producer produced " + message );
mbox.send( message );
}
}
}
import java.util.*;
public class Consumer extends Thread {
private MessageQueueueue mbox;
public Consumer( MessageQueueueue m ) {
mbox = m;
}
public void run() {
Date message;
while ( true ) {
int sleeptime = (int) (Server.NAP_TIME * Math.random());
System.out.println("Consumer sleeping for " +
sleeptime + " seconds" );
try {
Thread.sleep( sleeptime * 1000 );
} catch( InterruptedException e ) {}
message = ( Date ) mbox.receive();
if ( message != null )
System.out.println("Consumer consume " + message );
}
}
}
Kita memiliki dua aktor di sini, yaitu Produser dan Konsumer. Produser adalah thread yang menghasilkan waktu (Date) kemudian menyimpannya ke dalam antrian pesan. Produser juga mencetak waktu tersebut di layer (sebagai umpan balik bagi kita). Konsumer adalah thread yang akan mengakses antrian pesan untuk mendapatkan waktu (date) itu dan tak lupa mencetaknya di layer. Kita menginginkan supaya konsumer itu mendapatkan waktu sesuatu dengan urutan sebagaimana produser menyimpan waktu tersebut. Kita akan menghadapi salah satu dari dua kemungkinan situasi di bawah ini:
Bila p1 lebih cepat dari c1, kita akan memperoleh output sebagai berikut:
Gambar 2-13. Keluaran Program Produser Konsumer. Sumber: . . .
. . .
Consumer consume Wed May 07 14:11:12 ICT 2003
Consumer sleeping for 3 seconds
Producer produced Wed May 07 14:11:16 ICT 2003
Producer sleeping for 4 seconds
// p1 sudah mengupdate isi mailbox waktu dari Wed May 07
// 14:11:16 ICT 2003 ke Wed May 07 14:11:17 ICT 2003,
// padahal c1 belum lagi mengambil waktu Wed May 07 14:11:16
Producer produced Wed May 07 14:11:17 ICT 2003
Producer sleeping for 4 seconds
Consumer consume Wed May 07 14:11:17 ICT 2003
Consumer sleeping for 4 seconds
// Konsumer melewatkan waktu Wed May 07 14:11:16
. . .
Bila p1 lebih lambat dari c1, kita akan memperoleh keluaran seperti berikut:
Gambar 2-14. Keluaran Program Produser Konsumer. Sumber: . . .
. . .
Producer produced Wed May 07 14:11:11 ICT 2003
Producer sleeping for 1 seconds
Consumer consume Wed May 07 14:11:11 ICT 2003
Consumer sleeping for 0 seconds
// c1 sudah mengambil isi dari mailbox, padahal p1 belum
// lagi megupdate isi dari mailbox dari May 07 14:11:11
// ICT 2003 ke May 07 14:11:12 ICT 2003, c1 mendapatkan
// waktu Wed May 07 14:11:11 ICT 2003 dua kali.
Consumer consume Wed May 07 14:11:11 ICT 2003
Consumer sleeping for 0 seconds
Producer sleeping for 0 seconds
Producer produced Wed May 07 14:11:12 ICT 2003
. . .
Situasi di atas dikenal dengan race conditions. Kita dapat menghindari situasi itu dengan mensinkronisasikan aktivitas p1 dan c1 (sehubungan dengan akses mereka ke mailbox). Proses tersebut akan didiskusikan pada bagian berjudul Deadlock di Bab 3.
Mailbox
Gambar 2-15. Program Send/ Receive. Sumber: . . .
import java.util.*;
public class MessageQueue {
private Vector q;
public MessageQueue() {
q = new Vector();
}
// Mengimplementasikan pengiriman nonblocking
public void send( Object item ) {
q.addElement( item );
}
// Mengimplementasikan penerimaan nonblocking
public Object receive() {
Object item;
if ( q.size() == 0 )
return null;
else {
item = q.firstElement();
q.removeElementAt(0);
return item;
}
}
}
1.Menunggu sampai batas waktu yang tidak dapat ditentukan sampai terdapat ruang kosong pada mailbox.
2.Menunggu paling banyak n milidetik.
3.Tidak menunggu, tetapi kembali (return) secepatnya.
4.Satu pesan dapat diberikan kepada sistem operasi untuk disimpan, walau pun mailbox yang dituju penuh. Ketika pesan dapat disimpan pada mailbox, pesan akan dikembalikan kepada pengirim (sender). Hanya satu pesan kepada mailbox yang penuh yang dapat diundur (pending) pada suatu waktu untuk diberikan kepada thread pengirim.
Thread
Thread, atau kadang-kadang disebut proses ringan (lightweight), adalah unit dasar dari utilisasi CPU. Di dalamnya terdapat ID thread, program counter, register, dan stack. Dan saling berbagi dengan thread lain dalam proses yang sama.
Gambar 2-16. Thread. Sumber: . . .
Konsep Dasar
Secara informal, proses adalah program yang sedang dieksekusi. Ada dua jenis proses, proses berat (heavyweight) atau biasa dikenal dengan proses tradisional, dan proses ringan atau kadang disebut thread.
Thread saling berbagi bagian program, bagian data dan sumber daya sistem operasi dengan thread lain yang mengacu pada proses yang sama. Thread terdiri atas ID thread, program counter, himpunan register, dan stack. Dengan banyak kontrol thread proses dapat melakukan lebih dari satu pekerjaan pada waktu yang sama.
Keuntungan
1.Tanggap: Multithreading mengizinkan program untuk berjalan terus walau pun pada bagian program tersebut di block atau sedang dalam keadaan menjalankan operasi yang lama/ panjang. Sebagai contoh, multithread web browser dapat mengizinkan pengguna berinteraksi dengan suatu thread ketika suatu gambar sedang diload oleh thread yang lain.
2.Pembagian sumber daya: Secara default, thread membagi memori dan sumber daya dari proses. Keuntungan dari pembagian kode adalah aplikasi mempunyai perbedaan aktifitas thread dengan alokasi memori yang sama.
3.Ekonomis: Mengalokasikan memori dan sumber daya untuk membuat proses adalah sangat mahal. Alternatifnya, karena thread membagi sumber daya dari proses, ini lebih ekonomis untuk membuat threads.
4.Pemberdayaan arsitektur multiprosesor: Keuntungann dari multithreading dapat ditingkatkan dengan arsitektur multiprosesor, dimana setiap thread dapat jalan secara parallel pada prosesor yang berbeda. Pada arsitektur prosesor tunggal, CPU biasanya berpindah-pindah antara setiap thread dengan cepat, sehingga terdapat ilusi paralelisme, tetapi pada kenyataannya hanya satu thread yang berjalan di setiap waktu.
User Threads
Gambar 2-17. User dan Kernel Thread. Sumber: . . .
User thread didukung oleh kernel dan diimplementasikan oleh thread library ditingkat pengguna. Library mendukung untuk pembentukan thread, penjadualan, dan managemen yang tidak didukung oleh kernel.
Kernel Threads
Kernel thread didukung secara langsung oleh sistem operasi: pembentukan thread, penjadualan, dan managemen dilakukan oleh kernel dalam ruang kernel. Karena managemen thread telah dilakukan oleh sistem operasi, kernel thread biasanya lebih lambat untuk membuat dan mengelola daripada pengguna thread. Bagaimana pun, selama kernel mengelola thread, jika suatu thread di block tehadap sistem pemanggilan, kernel dapat menjadualkan thread yang lain dalam aplikasi untuk dieksekusi. Juga, di dalam lingkungan multiprosesor, kernel dapat menjadualkan thread dalam prosesor yang berbeda. Windows NT, Solaris, dan Digital UNIX adalah sistem operasi yang mendukung kernel thread.
Model Multithreading
Dalam sub bab sebelumnya telah dibahas pengertian dari thread, keuntungannya, tingkatan atau levelnya seperti pengguna dan kernel. Maka dalam sub-bab ini pembahasan akan dilanjutkan dengan jenis-jenis thread tersebut dan contohnya baik pada Solaris mau pun Java.
Sistem-sistem yang ada sekarang sudah banyak yang bisa mendukung untuk kedua pengguna dan kernel thread, sehingga model-model multithreading-nya pun menjadi beragam. Implementasi multithreading yang umum akan kita bahas ada tiga, yaitu model many-to-one, one-to-one, dan many-to-many.
Gambar 2-18. Model Multithreading. Sumber: . . .
Model Many to One
Model many-to-one ini memetakan beberapa tingkatan pengguna thread hanya ke satu buah kernel thread. Managemen proses thread dilakukan oleh (di ruang) pengguna, sehingga menjadi efisien, tetapi apabila sebuah thread melakukan sebuah pemblokingan terhadap sistem pemanggilan, maka seluruh proses akan berhenti (blocked). Kelemahan dari model ini adalah multihreads tidak dapat berjalan atau bekerja secara paralel di dalam multiprosesor dikarenakan hanya satu thread saja yang bisa mengakses kernel dalam suatu waktu.
Gambar 2-19. Model Many to One. Sumber: . . .
Model One to One
Model one-to-one memetakan setiap thread pengguna ke dalam satu kernel thread. Hal ini membuat model one-to-one lebih sinkron daripada model many-to-one dengan mengizinkan thread lain untuk berjalan ketika suatu thread membuat pemblokingan terhadap sistem pemanggilan; hal ini juga mengizinkan multiple thread untuk berjalan secara parallel dalam multiprosesor. Kelemahan model ini adalah dalam pembuatan thread pengguna dibutuhkan pembuatan korespondensi thread pengguna. Karena dalam proses pembuatan kernel thread dapat mempengaruhi kinerja dari aplikasi maka kebanyakan dari implementasi model ini membatasi jumlah thread yang didukung oleh sistem. Model one-to-one diimplementasikan oleh Windows NT dan OS/2.
Gambar 2-20. Model One to One. Sumber: . . .
Model Many to Many
Beberapa tingkatan thread pengguna dapat menggunakan jumlah kernel thread yang lebih kecil atau sama dengan jumlah thread pengguna. Jumlah dari kernel thread dapat dispesifikasikan untuk beberapa aplikasi dan beberapa mesin (suatu aplikasi dapat dialokasikan lebih dari beberapa kernel thread dalam multiprosesor daripada dalam uniprosesor) dimana model many-to-one mengizinkan pengembang untuk membuat thread pengguna sebanyak mungkin, konkurensi tidak dapat tercapai karena hanya satu thread yang dapat dijadualkan oleh kernel dalam satu waktu. Model one-to-one mempunyai konkurensi yang lebih tinggi, tetapi pengembang harus hati-hati untuk tidak membuat terlalu banyak thread tanpa aplikasi dan dalam kasus tertentu mungkin jumlah thread yang dapat dibuat dibatasi.
Gambar 2-21. Model Many to Many. Sumber: . . .
Thread Dalam Solaris 2
Solaris 2 merupakan salah satu versi dari UNIX yang sampai dengan tahun 1992 hanya masih mendukung proses berat (heavyweight) dengan kontrol oleh satu buah thread. Tetapi sekarang Solaris 2 sudah berubah menjadi sistem operasi yang modern yang mendukung threads di dalam level kernel dan pengguna, multiprosesor simetrik (SMP), dan penjadualan real-time.
Threads di dalam Solaris 2 sudah dilengkapi dengan library mengenai API-API untuk pembuatan dan managemen thread. Di dalam Solaris 2 terdapat juga level tengah thread. Di antara level pengguna dan level kernel thread terdapat proses ringan/ lightweight (LWP). Setiap proses yang ada setidaknya mengandung minimal satu buah LWP. Library thread memasangkan beberapa thread level pengguna ke ruang LWP-LWP untuk diproses, dan hanya satu user-level thread yang sedang terpasang ke suatu LWP yang bisa berjalan. Sisanya bisa diblok mau pun menunggu untuk LWP yang bisa dijalankan.
Operasi-operasi di kernel seluruhnya dieksekusi oleh kernel-level threads yang standar. Terdapat satu kernel-level thread untuk tiap LWP, tetapi ada juga beberapa kernel-level threads yang berjalan di bagian kernel tanpa diasosiasikan dengan suatu LWP (misalnya thread untuk pengalokasian disk). Thread kernel-level merupakan satu-satunya objek yang dijadualkan ke dalam sistem (lihat bagian berjudul Penjadual CPU mengenai scheduling). Solaris menggunakan model many-to-many.
Thread level pengguna dalam Solaris bisa berjenis bound mau pun unbound. Suatu bound thread level pengguna secara permanen terpasang ke suatu LWP. Jadi hanya thread tersebut yang bekerja di LWP, dan dengan suatu permintaan, LWP tersebut bisa diteruskan ke suatu prosesor. Dalam beberapa situasi yang membutuhkan waktu respon yang cepat (seperti aplikasi real-time), mengikat suatu thread sangatlah berguna. Suatu thread yang unbound tidak secara permanen terpasang ke suatu LWP. Semua threads unbound dipasangkan (secara multiplex) ke dalam suatu ruang yang berisi LWP-LWP yang tersedia untuk aplikasi. Secara default thread-thread yang ada adalah unbound.
Misalnya sistem sedang beroperasi, setiap proses bisa mempunyai threads level pengguna yang banyak. User-user level thread ini bisa dijadual dan diganti di antara LWP-LWP-nya oleh thread library tanpa intervensi dari kernel. User-level threads sangatlah efisien karena tidak dibutuhkan bantuan kerja kernel oleh thread library untuk menukar dari satu user-level thread ke yang lain.
Setiap LWP terpasang dengan tepat satu kernel-level thread, dimana setiap user-level thread tidak tergantung dari kernel. Suatu proses mungkin mempunyai banyak LWP, tetapi mereka hanya dibutuhkan ketika thread harus berkomunikasi dengan kernel. Misalnya, suatu LWP akan dibutuhkan untuk setiap thread yang bloknya konkuren di sistem pemanggilan. Anggap ada lima buah pembacaan berkas yang muncul. Jadi dibutuhkan lima LWP, karena semuanya mungkin mengunggu untuk penyelesaian proses I/O di kernel. Jika suatu proses hanya mempunyai empat LWP, maka permintaan yang kelima harus menunggu unuk salah satu LWP kembali dari kernel. Menambah LWP yang keenam akan sia-sia jika hanya terdapat tempat untuk lima proses.
Kernel-kernel threads dijadual oleh penjadual kernel dan dieksekusi di CPU atau CPU-CPU dalam sistemnya. Jika suatu kernel thread memblok (misalnya karena menunggu penyelesaian suatu proses I/O), prosesor akan bebas untuk menjalankan kernel thread yang lain. Jika thread yang sedang terblok sedang menjalankan suatu bagian dari LWP, maka LWP tersebut akan ikut terblok. Di tingkat yang lebih atas lagi, user-level thread yang sedang terpasang ke LWP tersebut akan terblok juga. Jika suatu proses mempunyai lebih dari satu LWP, maka LWP lain bisa dijadual oleh kernel.
Para pengembang menggunakan struktur-struktur data sebagai berikut untuk mengimplementasikan thread-thread dalam Solaris 2:
Suatu user-level thread mempunyai thread ID, himpunan register (mencakup suatu PC dan stack pointer), stack dan prioritas (digunakan oleh library untuk penjadualan). Semua struktur data tersebut berasal dari ruang user.
Suatu LWP mempunyai suatu himpunan register untuk user-level thread yang ia jalankan, juga memori dan informasi pencatatan. LWP merupakan suatu struktur data dari kernel, dan bertempat pada ruang kernel.
Suatu kernel thread hanya mempunyai struktur data yang kecil dan sebuah stack. Struktur datanya melingkupi copy dari kernel-kernel registers, suatu pointer yang menunjuk ke LWP yang terpasang dengannya, dan informasi tentang prioritas dan penjadualan.
Setiap proses dalam Solaris 2 mempunyai banyak informasi yang terdapat di process control block (PCB). Secara umum, suatu proses di Solaris mempunyai suatu proses id (PID), peta memori, daftar dari berkas yang terbuka, prioritas, dan pointer yang menunjuk ke daftar LWP yang terasosiasi kedalam proses.
Gambar 2-22. Thread Solaris dan Java. Sumber: . . .
Thread Java
Seperti yang telah kita lihat, thread didukung selain oleh sistem operasi juga oleh paket library thread. Sebagai contoh, Win32 library mempunyai API untuk multithreading aplikasi Windows, dan Pthreads mempunyai fungsi manajmen thread untuk sistem POSIX-compliant. Java adalah unik dalam mendukung tingkatan bahasa untuk membuat dan managemen thread.
Semua program java mempunyai paling sedikit satu kontrol thread. Bahkan program java yang sederhana mempunyai hanya satu main() method yang berjalan dalam thread tunggal dalam JVM. Java menyediakan perintah-perintah yang mendukung pengembang untuk membuat dan memanipulasi kontrol thread pada program.
Satu cara untuk membuat thread secara eksplisit adalah dengan membuat kelas baru yang diturunkan dari kelas thread, dan menimpa run() method dari kelas Thread tersebut.
Object yang diturunkan dari kelas tersebut akan menjalankan sebagian thread control dalam JVM. Bagaimana pun, membuat suatu objek yang diturunkan dari kelas Thread tidak secara spesifik membuat thread baru, tetapi start() method lah yang sebenarnya membuat thread baru.
Memanggil start() method untuk objek baru mengalokasikan memori dan menginisialisasikan thread baru dalam JVM dan memanggil run() method membuat thread pantas untuk dijalankan oleh JVM. (Catatan: jangan pernah memanggil run() method secara langsung. Panggil start() method dan ini secara langsung akan memanggil run() method).
Ketika program ini dijalankan, dua thread akan dibuat oleh JVM. Yang pertama dibuat adalah thread yang berasosiasi dengan aplikasi-thread tersebut mulai dieksekusi pada main() method. Thread kedua adalah runner thread secara ekspilisit dibuat dengan start() method. Runner thread memulai eksekusinya dengan run() method.
Pilihan lain untuk membuat sebuah thread yang terpisah adalah dengan mendefinisikan suatu kelas yang mengimplementasikan runnable interface. Runnable interface tersebut didefinisikan sebagai berikut:
Gambar 2-23. Runnable. Sumber: . . .
Public interface Runnable
{
Public abstract void run();
}
Sehingga, ketika sebuah kelas diimplementasikan dengan runnable, kelas tersebut harus mendefinisikan run() method. Kelas thread yang berfungsi untuk mendefinisikan static dan instance method, juga mengimplementasikan runnable interface. Itu menerangkan bahwa mengapa sebuah kelas diturunkan dari thread harus mendefinisikan run() method.
Implementasi dari runnable interface sama dengan mengekstend kelas thread, satu-satunya kemungkinan untuk mengganti "extends thread" dengan "implements runnable".
Gambar 2-24. Class Worker2. Sumber: . . .
Class worker2 implements Runnable
{
Public void run() {
System. Out. Println ("I am a worker thread. ");
}
}
Membuat sebuah thread dari kelas yang diimplementasikan oleh runnable berbeda dengan membuat thread dari kelas yang mengekstend thread. Selama kelas baru tersebut tidak mengekstend thread, dia tidak mempunyai akses ke objek static atau instance method — seperti start() method — dari kelas thread. Bagaimana pun, sebuah objek dari kelas thread adalah tetap dibutuhkan, karena yang membuat sebuah thread baru dari kontrol adalah start() method.
Di kelas kedua, sebuah objek thread baru dibuat melalui runnable objek dalam konstruktornya. Ketika thread dibuat oleh start() method, thread baru mulai dieksekusi pada run() method dari runnable objek. Kedua method dari pembuatan thread tersebut adalah cara yang paling sering digunakan.
Managemen Thread
Java menyediakan beberapa fasilitas API untuk mengatur thread — thread, diantaranya adalah:
Suspend(): berfungsi untuk menunda eksekusi dari thread yang sedang berjalan.
Sleep(): berfungsi untuk menempatkan thread yang sedang berjalan untuk tidur dalam beberapa waktu.
Resume(): hasil eksekusi dari thread yang sedang ditunda.
Stop(): menghentikan eksekusi dari sebuah thread; sekali thread telah dihentikan dia tidak akan memulainya lagi.
Setiap method yang berbeda untuk mengontrol keadaan dari thread mungkin akan berguna dalam situasi tertentu. Sebagai contoh: Applets adalah contoh alami untuk multithreading karena mereka biasanya memiliki grafik, animasi, dan audio — semuanya sangat baik untuk mengatur berbagai thread yang terpisah. Bagaimana pun, itu tidak akan mungkin bagi sebuah applet untuk berjalan ketika dia sedang tidak ditampilkan, jika applet sedang menjalankan CPU secara intensif. Sebuah cara untuk menangani situasi ini adalah dengan menjalankan applet sebagai thread terpisah dari kontrol, menunda thread ketika applet sedang tidak ditampilkan dan melaporkannya ketika applet ditampilkan kembali.
Anda dapat melakukannya dengan mencatat bahwa start() method dari sebuah applet dipanggil ketika applet tersebut pertama kali ditampilkan. Apabila user meninggalkan halaman web atau applet keluar dari tampilan, maka method stop() pada applet dipanggil (ini merupakan suatu keuntungan karena start() dan stop() keduanya terasosiasi dengan thread dan applet). Jika user kembali ke halaman web applet, kemudian start() method dipanggil kembali. Destroy() method dari sebuah applet dipanggil ketika applet tersebut dipindahkan dari cache-nya browser. Ini memungkinkan untuk mencegah sebuah applet berjalan ketika applet tersebut sedang tidak ditampilkan pada sebuah web browser dengan menggunakan stop() method dari applet yang ditunda dan melaporkan eksekusi tersebut pada thread di applet start() method.
Keadaan Thread
Sebuah thread java dapat menjadi satu dari 4 kemungkinan keadaan:
1.new: sebuah thread pada keadaan ini ada ketika objek dari thread tersebut dibuat.
2.runnable: memanggil start() method untuk mengalokasikan memori bagi thread baru dalam JVM dan memanggil run() method untuk membuat objek.
3.block: sebuah thread akan diblok jika menampilkan sebuah kalimat pengeblokan. Contohnya: sleep() atau suspend().
4.dead: sebuah thread dipindahkan ke keadaan dead ketika run() method berhenti atau ketika stop() method dipanggil.
Gambar 2-25. Keadaan Thread. Sumber: . . .
Thread dan JVM
Pada penambahannya ke java program mengandung beberapa thread yang berbeda dari kontrol, disini ada beberapa thead yang sedang berjalan secara tidak sinkron untuk kepentingan dari penanganan sistem tingkatan JVM seperti managemen memori dan grafik kontrol. Garbage Collector mengevaluasi objek ketika JVM untuk dilihat ketika mereka sedang digunakan. Jika tidak, maka itu akan kembali ke memori dalam sistem.
JVM dan Sistem Operasi
Secara tipikal implementasi dari JVM adalah pada bagian atas terdapat host sistem operasi, pengaturan ini mengizinkan JVM untuk menyembunyikan detail implementasi dari sistem operasi dan menyediakan sebuah kekonsistenan, lingkungan yang abstrak tersebut mengizinkan program-program java untuk beroprasi pada berbagai sistem operasi yang mendukung sebuah JVM. Spesifikasi bagi JVM tidak mengidentifikasi bagaimana java thread dipetakan ke dalam sistem operasi.
Contoh Solusi Multithreaded
Pada bagian ini, kita memperkenalkan sebuah solusi multithreaded secara lengkap kepada masalah produser konsumer yang menggunakan penyampaian pesan. Kelas server pertama kali membuat sebuah mailbox untuk mengumpulkan pesan, dengan menggunakan kelas message queue kemudian dibuat produser dan konsumer threads secara terpisah dan setiap thread mereferensi ke dalam mailbox bersama. Thread produser secara bergantian antara tidur untuk sementara, memproduksi item, dan memasukkan item ke dalam mailbox. Konsumer bergantian antara tidur dan mengambil suatu item dari mailbox dan mengkonsumsinya. Karena receive() method dari kelas message queue adalah tanpa pengeblokan, konsumer harus mencek apakah pesan yang diambilnya tersebut adalah nol.
Penjadual CPU
Penjadual CPU adalah basis dari multi programming sistem operasi. Dengan men-switch CPU diantara proses. Akibatnya sistem operasi bisa membuat komputer produktif. Dalam bab ini kami akan mengenalkan tentang dasar dari konsep penjadual dan beberapa algoritma penjadual. Dan kita juga memaparkan masalah dalam memilih algoritma dalam suatu sistem.
Konsep Dasar
Tujuan dari multi programming adalah untuk mempunyai proses berjalan secara bersamaan, unutk memaksimalkan kinerja dari CPU. Untuk sistem uniprosesor, tidak pernah ada proses yang berjalan lebih dari satu. Bila ada proses yang lebih dari satu maka yang lain harus mengantri sampai CPU bebas.
Ide dari multi porgamming sangat sederhana. Ketika sebuah proses dieksekusi yang lain harus menunggu sampai selesai. Di sistem komputer yang sederhana CPU akan banyak dalam posisi idle.Semua waktu ini sangat terbuang. Dengan multiprogamming kita mencoba menggunakan waktu secara produktif. Beberapa proses di simpan dalam memori dalam satu waktu. Ketika proses harus menuggu. Sistem operasi mengmbil CPU untuk memproses proses tersebut dan meninggalkan proses yang sedang dieksekusi.
Penjadual adalah fungsi dasar dari suatu sistem operasi. Hampir semua sumber komputer dijadual sebelum digunakan. CPU salah satu sumber dari komputer yang penting yang menjadi sentral dari sentral penjadual di sistem operasi.
Siklus Burst CPU-I/O
Keberhasilan dari penjadual CPU tergantung dari beberapa properti prosesor. Proses eksekusi mengandung siklus CPU ekskusi dan I/o Wait. Proses hanya akan bolak-balik dari dua state ini. Poses eksekusi dimulai dengan CPU Burst, setelah itu diikuti oleh I/O burst, dan dilakukan secara bergiliran.
Durasi dari CPU bust ini ditelah diukur secara ekstensif, walau pun mereka sangat berbeda dari proses ke proses. Mereka mempunyai frekeunsi kurva yang sama seperti yang diperlihatkan gambar dibawah ini.
Gambar 2-26. CPU Burst. Sumber: . . .
Penjadual CPU
Kapan pun CPU menjadi idle, sistem opersai harus memilih salah satu proses untuk masuk kedalam antrian ready (siap) untuk dieksekusi. Pemilihan tersebut dilakukan oleh penjadual short term. Penjadual memilih dari sekian proses yang ada di memori yang sudah siap dieksekusi, den mengalokasikan CPU untuk mengeksekusinya
Penjadual CPU mungkin akan dijalankan ketika proses:
1.Berubah dari running ke waiting state.
2.Berubah dari running ke ready state.
3.Berubah dari waiting ke ready.
4.Terminates.
Penjadual dari no 1 sampai 4 non premptive sedangkan yang lain premptive. Dalam penjadual nonpreemptive sekali CPU telah dialokasikan untuk sebuah proses, maka tidak bisa di ganggu, penjadual model seperti ini digunakan oleh Windows 3.x; Windows 95 telah menggunakan penjadual preemptive.
Dispatcher
Komponen yang lain yang terlibat dalam penjadual CPU adalan dispatcher. Dispatcher adalah modul yang memberikan kontrol CPU kepada proses yang fungsinya adalah:
1.Alih Konteks
2.Switching to user mode.
3.Lompat dari suatu bagian di progam user untuk mengulang progam.
Dispatcher seharusnya secepat mungkin.
Kriteria Penjadual
Algoritma penjadual CPU yang berbeda mempunyai property yang berbeda. Dalam memilih algoritma yang digunakan untuk situasi tertentu, kita harus memikirkan properti yang berbeda untuk algoritma yang berbeda. Banyak kriteria yang dianjurkan utnuk membandingkan penjadual CPU algoritma. Kritria yang biasanya digunakan dalam memilih adalah:
1.CPU utilization: kita ingin menjaga CPU sesibuk mungkin. CPU utilization akan mempunyai range dari 0 ke 100 persen. Di sistem yang sebenarnya seharusnya ia mempunyai range dari 40 persen samapi 90 persen.
2.Throughput: jika CPU sibuk mengeksekusi proses, jika begitu kerja telah dilaksanakan. Salah satu ukuran kerja adalah banyak proses yang diselesaikan per unit waktu, disebut througput. Untuk proses yang lama mungkin 1 proses per jam; untuk proses yang sebentar mungkin 10 proses perdetik.
3.Turnaround time: dari sudur pandang proses tertentu, kriteria yang penting adalah berapa lama untuk mengeksekusi proses tersebut. Interval dari waktu yang diizinkan dengan waktu yang dibutuhkan untuk menyelesaikan sebuah prose disebut turn-around time. Trun around time adalah jumlah periode untuk menunggu untuk bisa ke memori, menunggu di ready queue, eksekusi di CPU, dan melakukan I/O.
4.Waiting time: algoritma penjadual CPU tidak mempengaruhi waktu untuk melaksanakan proses tersebut atau I/O; itu hanya mempengaruhi jumlah waktu yang dibutuhkan proses di antrian ready. Waiting time adalah jumlah periode menghabiskan di antrian ready.
5.Response time: di sistem yang interaktif, turnaround time mungkin bukan waktu yang terbaik untuk kriteria. Sering sebuah proses bisa memproduksi output diawal, dan bisa meneruskan hasil yang baru sementara hasil yang sebelumnya telah diberikan ke user. Ukuran yang lain adalah waktu dari pengiriamn permintaan sampai respon yang pertama di berikan. Ini disebut response time, yaitu waktu untuk memulai memberikan respon, tetapi bukan waktu yang dipakai output untu respon tersebut.
Biasanya yang dilakukan adalah memaksimalkan CPU utilization dan throughput, dan minimalkan turnaround time, waiting time, dan response time dalam kasus tertentu kita mengambil rata-rata.
Algoritma Penjadual First Come, First Served
Penjadual CPU berurusan dengan permasalahan memutuskan proses mana yang akan dillaksanakan, oleh karena itu banyak bermacam algoritma penjadual, di seksi ini kita akan mendiskripsikan beberapa algoritma.
Ini merupakan algoritma yang paling sederhana, dengan skema proses yang meminta CPU mendapat prioritas. Implementasi dari FCFS mudah diatasi dengan FIFO queue.
Contoh:
Gambar 2-27. Kedatangan Proses. Sumber: . . .
misal urutan kedatangan adalah P1, P2, P3 Gantt Chart untuk ini adalah:
Gambar 2-28. Gannt Chart Kedatangan Proses I. Sumber: . . .
Gambar 2-29. Gannt Chart Kedatangan Proses II. Sumber: . . .
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar